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Abstract

We analyze the dynamic implications of learning in a large population co-
ordination game where both the actions of the players and the communication
network evolve over time. Cost considerations of social interaction are incorpo-
rated by considering a circular model with endogenous neighborhoods, meaning
that the locations of the players are fixed but players can create their own com-
munication network.

The dynamic process describing medium-run behavior is shown to converge
to an absorbing state, which may be characterized by coexistence of conven-
tions. In the long run, when mistake probabilities are small but nonvanishing,
coexistence of conventions is no longer sustainable as the risk-dominant con-
vention becomes the unique stochastically stable state.

JEL Classification Codes: C72, C73.
Keywords: Learning, coordination, endogenous neighborhoods, Markov process,

coexistence of conventions, risk dominance.

*We would like to thank Jeroen Suijs for helpful discussions and comments and Jim Venuto for
programming support.

"Department of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands, E-mail: E.J.R.Droste@kub.nl.

{Corresponding Author: Department of Economics (0316), Virginia Tech, Blacksburg, VA 24061,
USA, E-mail: rgilles@vt.edu.

$Department of Economics (0316), Virginia Tech, Blacksburg, VA 24061, USA, E-mail:
cjohnson@vt.edu.



1 Introduction

In a wide variety of economic and social environments, an agent’s utility depends on
successful coordination with other individuals. The following two examples illustrate
this point. First, as suggested by Lewis [19], suppose that oligopolists are confronted
with a change in the price of their raw material and therefore must set new prices
of their product. It is to no one’s advantage to set his price higher than the others
set theirs, since if he does, he tends to lose his share of the market. Nor is it to
anyone’s advantage to set his price lower than the others set theirs, since if he does,
he menaces his competitors and incurs their retaliation. Hence, each competitor
must set his price close to the price he expects the others to set. Second, as described
by Diamond [7], in various parts of the world in the early stages of food production
hunter-gatherer societies were confronted with the introduction of cultivation of plants
and the domestication of animals. It was to one’s advantage to coordinate in either
hunting and gathering or food production.! Once coordination has been achieved on
a certain behavior, then it is likely that this behavior will become the convention.
For this reason Lewis [19] and Schelling [22] already stated that a convention should
be considered a solution to a coordination problem. More precisely, Lewis defines a
convention as a behavioral regularity such that everyone conforms to the regularity,
expects others to conform, and wants to conform given that others conform.

The above examples illustrate two fundamental factors important in determining
optimal behavior when agents face a coordination problem. An agent’s expectation
about the behavior of others plays a significant role. But underlying those expec-
tations is an interaction structure governing communication between the players.
Implicit in our discussion of conventions, we find ourselves talking about localities:
geographic or social. Diamond [7] stresses the local, spatial interaction throughout his
thesis.2 Other examples of well-known conventions are languages, currencies, product

standards, codes of dress and accounting standards.

! Although, as Diamond points out on page 105 that most peasant farmers and herders weren’t
necessarily better off than hunter-gatherers: “Archeologists have demonstrated that the first farmers
in many areas were smaller and less well-nourished, suffered from more serious diseases, and died
on the average at a younger age than the hunter-gatherers they replaced.” The explanation offered
for the increase in farming and herding communities is that individuals were seeking to minimize
the risk of starvation.

20n page 103 Diamond writes, “In short, only a few areas of the world developed food production
independently, and they did so at wildly differing times. From those nuclear areas, hunter-gatherers
of some neighboring areas learned food production,...”



Overview of the Model

We analyze the dynamic implications of learning in a large population coordination
game where agents are distributed spatially, and both the actions of the players
and the communication network between these players evolve over time. We follow
the conventional evolutionary game theoretic models on coordination problems in
assuming that players use the same pure strategy against all opponents they interact
with, i.e., the players with whom they communicate, and we allow for this strategy
to be adjusted over time. We depart from the conventional models in assuming that
the interaction network itself is also subject to evolutionary pressure. Jackson and
Watts [15] develop a similar setting; we depart from that model by incorporating
cost considerations of social interaction. Instead we devise a circular model with
an endogenous communication network, meaning that the locations of the players
are fixed but players can create their own interaction neighborhood by forming and
severing links with other players. We assume that the larger the distance between
two players on the circle, the larger the maintenance costs of the mutual link will be.
As maintenance costs include invested time and effort, distance should not only be
interpreted as physical distance but may also represent social distance.

Players typically react myopically to their environment by deciding about both
pure strategies and links based on a best-reply dynamics. Sometimes, however, play-
ers make mistakes when implementing their decisions, or alternatively players exper-
iment with nonoptimal replies. Whether or not these mistakes should be included
explicitly in the model depends on the span of time over which we are interested in
the players’ behavior as predicted by the model. As explained by Binmore, Samuel-
son and Vaughan [5] the model corresponds to the players’ medium-run behavior in
the absence of the perturbations representing the players’ mistakes. We find that in
this case, the dynamic process converges to an absorbing state. As the set of ab-
sorbing states includes states in which different kinds of behavior are observed, the
population’s medium-run behavior is possibly characterized by coexistence of conven-
tions. In the long run, i.e., when the perturbations representing the players’ mistakes
are taken into account, coexistence of conventions is no longer possible. Namely,
the risk-dominant convention is the unique stochastically stable convention, meaning
that it will be observed almost surely when the mistake probabilities are small but

nonvanishing.



Related Literature

As stated earlier, Jackson and Watts study an endogenous model of network forma-
tion. Although our models differ in cost considerations we obtain similar insights.
Theorem 4 in Section 4 is equivalent to their first main result within a spatial setting.

Related to the present paper is also the literature on network formation. Dynamic
models of network formation are considered by e.g. Bala and Goyal [2], Jackson and
Watts [14], and Watts [23]. In these models the presence of a link however does
not indicate that the involved players interact by means of playing a game. Instead
there is a deterministic benefit from an emerging network. The best-known and most
intuitive example is the symmetric connections model as introduced by Jackson and
Wolinsky [16], which represents social communication between agents. In fact, agents
communicate with all other agents they are directly or indirectly connected with. The
value of the communication depends on the number of links involved in the shortest
path that connects a pair of agents. Watts [23] shows convergence to an efficient
network in case costs are small and closer connections are valued more than distant
connections. Note that the model is deterministic and therefore involves initial state
dependence. Bala and Goyal [2] also find convergence to efficient networks in their
deterministic setting. Their model differs from Watts [23] as it focuses on directed
networks and players receive the same benefit from direct and indirect connections.
Jackson and Watts [14] consider a stochastic model similar to Kandori, Mailath and
Rob [17] and Young [24]. They find that the networks that occur with positive
probability in the stationary distribution when mistake probabilities go to zero are
either stable or a cycle. In their model efficiency can not be ensured.

The evolution and stability of conventions is analyzed through the population
adjustment models with persistent randomness in Kandori, Mailath and Rob [17],
Young [24], and Ellison [8]. With respect to coordination games these learning models
identify the risk-dominant equilibrium as the unique long-run convention. Goyal
and Janssen [12] focus on nonexclusive conventions in a deterministic framework to
model the idea that, at the expense of some additional costs, players can remain
flexible and therefore coordinate their actions more successfully. They find that the
Pareto-efficient or risk-dominant equilibrium prevails depending on whether these
costs are low or high, respectively. Furthermore, at intermediate cost levels, the two
conventions coexist. Coexistence of exclusive conventions is also a feature of the

model with noise on the margin analyzed by Anderlini and Ianni [1].



The models mentioned above deal with exogenously given patterns of interaction.
In particular, Kandori, Mailath and Rob [17] and Young [24] use uniform matching
rules, meaning that every player possibly interacts with all other players, while An-
derlini and Tanni [1], Ellison [8], and Goyal and Janssen [12] use local matching rules,
expressing that every player can only interact with a small subset of the population.
However, by fixing the pattern of interaction exogenously these models ignore that
players may have the desire and, at least to some extent, the ability to affect the set
of players with whom they interact.

Endogenous patterns of interaction in population adjustment models can also
be realized by allowing players to migrate, i.e., choose their location. Bhaskar and
Vega-Redondo [4], Ely [9], Mailath, Samuelson and Shaked [20], and Oechssler [21]
show that migration implies, or at least allows for, the population to coordinate
on the Pareto-efficient equilibrium. In particular, Oechssler [21] shows that in his
deterministic framework, given that all conventions are initially present, the efficient
one will eventually prevail throughout. Ely [9] considers a stochastic model and shows
by considering the stationary distribution when mistakes probabilities become small
that the efficient convention will occur independent of the initial conditions. In both
models coexistence of conventions is not possible. Bhaskar and Vega-Redondo [4], in
a model with asynchronous strategy and location revision opportunities, indicate the
possibility of coexistence of conventions in the medium run when the game is a ‘pure’
coordination game. Also in the long run both conventions are possible, i.e., both
appear with positive probability in the stationary distribution of the stochastic model,
in the case of frequent play. Otherwise, only the efficient convention is stochastically
stable. Finally, Mailath, Samuelson and Shaked [20] look at a quite different context
in continuous time. Players of two continuum populations have to decide which
location to visit. They show that if the evolutionary process is monotonic and players
can avoid undesirable matching, then every locally stable configuration is efficient.

The paper is organized as follows. In Section 2 we introduce the model. Section
3 deals with the deterministic model describing the medium-run behavior of the dy-
namic process. Long-run behavior is analyzed in Section 4 by means of the stationary
distribution of the stochastic model when mistakes are small but nonvanishing. The
robustness of the obtained results with respect to the exact specification of the model
is discussed in Section 5. Finally, Section 6 concludes and Section 7 contains the

proofs.



2 The Model

Consider a large but finite population of players N = {1, ...,n} who are spatially dis-
tributed around a circle. Players are distributed around the circle in an equidistant
fashion. Each discrete-time period k& € Ny = {0,1,2,3,...} the players’ interaction
consists of two stages. In the first stage players form or sever links connecting them-
selves to other players. In the second stage pairs of players who are linked play a
coordination game and adjust their actions.

The state sy of the dynamic process in each period k is given by a graph g, with its
nodes representing the players and its edges capturing the established communication
links, and an action profile ag, specifying the action being played by every player
1 € N. Let G and A denote the set of possible graphs and the set of possible action
profiles, respectively, then s, = (gx,ax) € G x A= S.

Each period, the presence of a link between players ¢ and 7, with 7,5 € N and
i # j, results in a maintenance cost c;; to both players. The costs ¢;; are determined

by the distance between the two players on the circle. Formally, we assume that

cij =min{y|j —i|,vy|j —i+n|},

where v 2 0 are the so-called unit costs.

Let £; C N denote the set of players that player ¢ € N is linked with after the first
stage in period k € Ny. We refer to £, ;, as the interaction neighborhood of player ¢ at
time k. In addition, with slight abuse of notation, we write ay = (@i, az, 5> Q-z; 4 )-
Note that when not causing any confusion £, ;, and a; ; may also be denoted by £; and
a;, respectively. In the second stage of each period k, a player ¢ plays a coordination
game with all players j € £; ;. The gross benefits are determined by the utilities u

in the 2 x 2 coordination game given below.

A | B
Alaalcd (1)
B |dc|bb

The payoff to player 7 in period k is given by

0 otherwise,

- u(aig, aip) if L; &
i (ai,kyaﬁi,kyk) B { ZJGLUC ( o Lk) i,k 7& y



where a;), € {A, B}, for all i € N and Ny. The net benefits of a player ¢ can be

found by subtracting all maintenance costs, » cij, from his gross benefits. For

jeL;
notational convenience only we assume that a,jb, c;kd € NU{0}. Furthermore, it is
required that a > d 2 0 and b > ¢ 2 0, implying that both (A, A) and (B, B) are
strict Nash equilibria. Furthermore, the payoffs a and b are taken to be larger than
or equal to v for the model to be nontrivial, i.e., for the players to have an incentive
to interact. Finally, we assume that a + ¢ > b+ d, implying that (A, A) is the risk-
dominant equilibrium as defined by Harsanyi and Selten [13]. Note that when the
two actions have equal security levels, i.e., ¢ = d, (A, A) is also the Pareto-efficient
equilibrium.

Now, we describe how players establish and sever links, and how they adjust their
pure strategies. The process of link formation and link severance is based on the
process described in Jackson and Watts [14] and similar to Jackson and Watts [15].
In the first stage of each period k two players ¢ and j, j # ¢, are randomly selected with
probability p;; > 0. Hence, we consider a matching process with players randomly
meeting each other in pairs, and time periods being identified with the encounters.
Only the two players constituting that pair can alter their (potential) mutual link in
period k. If their mutual link already exists, they decide whether to sever it, and
otherwise they decide whether to create the link.

The part of the dynamic process that describes how the two selected players
establish or sever a mutual link is modelled as follows. First, suppose player ¢ and j
are not linked and therefore have to decide whether to establish the link ij. Player ¢
compares the payoff he would have received from playing the coordination game with

player j in the previous period with the maintenance costs ¢;; of the link, i.e.,
u (ai,kfla aj,lcfl) 2 Cij-

Of course, player j follows exactly the same procedure. Only in case both payoffs
are greater than or equal to the costs ¢;;, the players decide to establish the mutual
link. Notice that according to the deterministic part of the link formation process,
two players will never establish a link if their mutual distance on the circle exceeds
max{%, %} Namely, in that case the maintenance costs are always larger than
the payoff obtained in the coordination game. Second, suppose that at the moment
players ¢ and 7 are linked, and that they therefore have to decide whether to sever their

mutual link. Either player can sever the link ¢j unilaterally if u (a; x—1,aj5-1) < ¢ij.



We assume that every linking decision made by a pair of players is implemented
correctly with probability 1—27, where 7 = 0. With probability 27, the two potential
linking decisions are implemented with equal probability.

To describe the adjustment of the players’ pure strategies, we follow Ellison [8]
by assuming that players typically react myopically to their environment. In fact, we

assume that in the second stage of period ¢, player ¢ chooses
Qi € argmMaxm; (@i, ac, ,e-1) (2)

with probability 1 — 2e, where ¢ = 0. With probability 2e player ¢ chooses between
the two pure strategies at random with equal probability. Player j adjusts his pure
strategy in the same way.

We refer to Section 5 for a discussion of alternative specifications of the dynamic

process.

For a given initial state so € &, the dynamic process introduced above defines a
Markov process {s}cy, in discrete time with the finite state space S = G x A. Let
P := P(7,¢e) denote the (one-step) transition matrix of the Markov process. Then,
if s=1(g,a), 5= (g,a) € S, the entry Ps; := Py (7,¢) of the transition matrix is the
probability that the state is § at time k 4 1 conditional on the state being s at time
k,ie.,

Py =Pr(sgp1 =8| sx=53).

Let P! := P'(7,¢) denote the I-step transition matrix of the Markov process, then
the entry P, :

;= Pl (7,¢) of the [-step transition matrix is equal to
Pl =Pr (s =35 s, =s5).

We refer to the Markov process {sy} .y, as adaptive play.

3 Adaptive Play without Mistakes

This section deals with the model introduced in section 2 when both mistake prob-
abilities, 7 and €, are equal to zero. We refer to this specific Markov process as
adaptive play without mistakes. As discussed extensively by Binmore, Samuelson and

Vaughan [5] adaptive behavior without mistakes describes the medium-run behavior
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of the dynamic process, where the medium-run refers to the time span needed for the
dynamic process to reach the neighborhood of the first equilibrium near to which it
will stay for a significant period of time.

Analyzing the dynamic process in the medium run boils down to identifying the
absorbing states of the Markov process representing adaptive play without mistakes.
An absorbing state is a state that once entered cannot be left. With respect to the
present model this implies that in an absorbing state no single player wants to sever
any of the links he is involved in, no pair of players wants to establish a mutual link or
adapt his pure strategy. Below, we discuss what the absorbing states of adaptive play
without mistakes look like, and we explore conditions which guarantee convergence
to one of these absorbing states.

A convention is defined by Lewis [19] as a pattern of behavior that is customary,
expected, and self-enforcing, meaning that everyone conforms, expects others to con-
form, and wants to conform given that everyone else conforms, respectively. Since
a convention is self-enforcing, it has to be an absorbing state of the Markov process
describing adaptive play without mistakes. It can easily be verified that the present

model has two absorbing states which are conventions. Namely, the state such that

{%:A a o)

j€£i<:>0ij§—

for all 7 € N and the state such that

{“:a b )

Jeﬁz’@@jéga

for all i € N. We refer to (3) as the (A, %)—convention or the risk-dominant conven-
tion and to (4) as the (B, %)—convention.

The (A, %)—convention and <B, %)—convention are, however, not the only ab-
sorbing states of adaptive behavior without mistakes. The other absorbing states
indicate that the players’ medium-run behavior may be characterized by coexistence
of conventions. The following example shows existence of an absorbing state in which
players act differently. This absorbing state therefore indicates the possibility of co-
existence of conventions in the medium-run, see also Bhaskar and Vega-Redondo [4]

for a similar observation.



0 =A
e-B
---- =link

Figure 1: An absorbing state reflecting co-existence of conventions.

Example 1 Consider a population consisting of 12 players. Assume v = 1 and let
the payoffs of the coordination game be given by a =2, b= 1, and ¢ =d = 0. It can
easily be verified that the state represented in Figure 1 is an absorbing state. Since
players do not conform to the same pattern of behavior, the absorbing state is not
a convention. The absorbing state does, however, show the presence of local clusters
of players who conform, expect others to conform, and want to conform (given that
others conform) to the same pattern of behavior. We refer to the presence of such
clusters in an absorbing state as coexistence of conventions. It is not hard to see that
there are typically many absorbing states which exhibit such clusters. Note that in
order for such a state to be an absorbing state the clusters of A-players and B-players
should be at least of size % and %, respectively, the off-diagonal payoffs must be less
than ~ and finally, the population must be large enough so that the population could
not become the interaction neighborhood for a player, i.e., L%J > max {%, %} ) ¢
The following theorem specifies the condition on the size of the population under
which convergence of adaptive play without mistakes can be guaranteed almost surely.

Let |z| denote the greatest integer smaller than or equal to z.



1 2 1 2
— ®=-A
o=B
- — =link

Figure 2: A cycle

vy
adaptive behavior without mistakes converges almost surely to an absorbing state.

Theorem 2 Assume that ng > max{ﬂ b}. Then for any initial state sy € S

The proof of Theorem 2 is contained in Section 7.1.

The condition L%J > max {%, %} requires that the population is sufficiently large to
ensure that for every player ¢ € N there exist a player j # i such that, independent
of the outcome of the game, it is too costly for them to be linked. According to
Theorem 2 this condition excludes the possibility that the dynamic process ends up

in a cycle. The necessity of this assumption is illustrated with Example 3.

Example 3 Consider a population consisting of two players who are situated on a
circle and assume that v = 1 and min{¢,d} 2 1, i.e., player 1 and player 2 want to
be linked independent of the outcome of the game. The two players will therefore
form a link (if not already present) in the first stage of period 1 and sustain it in all
subsequent periods. Since the players adapt their actions myopically as specified by
(2), it can easily be verified that any initial state such that the actions of player 1
and player 2 are different, results in a cycle as represented in Figure 2, where both
players will adapt their pure strategies continuously. Consequently, the players’ pure
strategies will be different every period and adaptive behavior without mistakes will

never settle down. ¢
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4 Adaptive Play with Mistakes

In this section we consider adaptive play with mistakes. With both kinds of mistakes
as part of the model, i.e., 7 > 0 and € > 0, the transition matrix of the Markov
process is irreducible and aperiodic. Irreducibility means that for every pair of states
s, s’ € S, there exists a time [ := [ (s,5) such that (P') >0, i.e., every state in the
state space can be reached from every other state with positive probability. A Markov
process is aperiodic if for every state s in the state space it holds that P, > 0, i.e.,
for every state there is a positive probability of remaining there in the next period.

A stationary distribution of the Markov process is a row vector ¢ := ¢ (71,¢e) €
A\s|-1 such that ¢P = ¢, where

Aigl-1 = {1/ € RIS |1/8 20forallseSand ) v, = 1}.

In Lemma 7 found in Section 7.2 we summarize the standard results in the literature
that an irreducible and aperiodic Markov process is ergodic, meaning that the Markov
process has a unique stationary distribution, and that the process converges to this
stationary distribution from any initial state. Furthermore, along any sample path the
distribution of realized states approaches the stationary distribution almost surely.
As mentioned earlier, the stationary distribution is a good description of the
behavior of the adaptive process in the long run. Namely, the adaptive process jumps
from an absorbing state to the basin of attraction of another absorbing state due
to the occurrence of very unlikely realizations of the perturbations of the dynamic
process, i.e., of the players’ mistakes. Only given a very long period of time, these
jumps will occur often enough to produce a well-defined stationary distribution, which

represents an asymptotic probability distribution over the states.

To explore what the stationary distribution of adaptive play with mutations looks
like, we introduce the following notation. An z-tree t on S = G x A is a function
t : S — S such that ¢ (x) = = and for all s # x there exists an m with ™ (s) = x.

The stationary distribution ¢ (7,¢) is characterized by

¢, (r.8) =c(1,6) > [ Porcs) (7,2) (5)

teHy s#x

where H, is the set of z-trees on S and ¢ (7,¢) is a continuous function in 7 and e.
Notice that Foster and Young [10], Kandori, Mailath and Rob [17], and Ellison [§]

11



use the same characterization of the stationary distribution. We refer to those papers

and to Freidlin and Wentzell [11] for background material on the characterization.

Now consider the transition matrix P (7,¢) describing adaptive behavior with mis-
takes. The transition probabilities Py; (7,¢), i.e., the entries of the transition matrix,
are continuous in 7 and €. In fact, the transition probabilities are either zero or given
by a polynomial in 7 and . The constant term of such a polynomial is nonzero if and
only if the transition s — § occurs with positive probability in the Markov process
describing adaptive behavior without mistakes (7 = ¢ = 0). Furthermore, since each
time period only two players can alter their (potential) mutual link and adapt their
actions, the polynomial is of 7-order and e-order at most 1 and 2, respectively.

Because we are interested in small probabilities of 7-mistakes and e-mistakes, we
consider the asymptotic behavior of the stationary distribution ¢ (7,¢) as 7 — 0 and
e — 0. Henceforth, we denote the behavior of the stationary distribution ¢ (7,¢) as
7 — 0 and € — 0 by lim, . ,0¢(7,¢). In the analysis as stated in this section, we
assume that whenever these limits are taken, 7 and € go to zero at the same rate, i.e.,

0< leislllog < . (6)
The importance of this assumption will be discussed in detail in Section 5.

The asymptotic stationary distribution gives the percentage of the time that the
Markov process will spend in any state in the long run. The following theorem states
that the (A, %)-convention is the unique stochastically stable state, which means
that when the two mistake probabilities go to zero at the same rate, adaptive play
with mistakes will be in the (A, %)—convention almost all the time, provided that the
population is sufficiently large. Notice that the structure of the proof of Theorem 4

is identical to the structure of the proof of part (a) of Theorem 1 in Ellison [8].
Theorem 4 Letn = 3. If 0 <lim,. oL < oo, then lim,. o ¢(A a) (r,e) = 1.

The proof of Theorem 4 is contained in Section 7.2.

The intuition behind the theorem above is similar to the corresponding results in
Kandori, Mailath and Rob [17], Young [24], and Jackson and Watts [15]. Namely,
the (A, %) -convention or, equivalently, the risk-dominant convention is the state with
the largest basin of attraction, meaning that the minimal numbers of 7-mistakes and
e-mistakes needed to escape from its basin of attraction are larger than the minimal

numbers of mistakes needed to leave the basin of attraction of any other state.
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5 Discussion and Simulations

We now discuss the robustness of the model presented in Section 2. In particular,
we focus on alternative specifications of the stochastic and deterministic part of the
dynamic process and discuss how this would influence the results.

The stochastic part of the dynamic process not only consists of the mistake prob-
abilities, but also of the random selection of a pair of players. First, consider the
selection of a pair of players. Notice that this is the only stochastic element of adap-
tive play without mistakes, as analyzed in Section 3. The presence of this random
element drives the convergence result as stated in Theorem 2. Without this random
part of the model, i.e., with all players myopically updating links and pure strategies
each period, cycles can not be excluded as shown by Ellison [8].

Random selection of a pair of players is not the only way to obtain a convergence
result in a model without mistake probabilities. An alternative way to establish such
a result is analyzed by Young [24] and applied by Jackson and Watts [15], where the
random element is originated in a sampling procedure by the players. Young [24]
assumes that players base their decisions on limited information about the actions of
other players in the recent past. More precisely, every player inspects £ plays drawn
without replacement from the most recent m = k periods. A convergence result in
the absence of mistake probabilities can be obtained in case the fraction %, which
measures the completeness of the players’ information, is small enough. In other
words, convergence can only be ensured when the degree of randomness is sufficiently
high. Results similar to those formulated in Theorem 2 and Theorem 4 could therefore
still be obtained when we rephrase the present model such that it fits in the framework
as analyzed by Young [24] and Jackson and Watts [15]. Alternatively, we could allow
for the identified pair of players not only to alter their (potential) mutual link but also
to possibly sever all other links they are involved in, without changing the results.

Second, consider the stochastic part of the dynamic process reflecting that players
occasionally make mistakes when implementing their decisions. In Theorem 4, we
assumed that 7 and € go to zero at the same rate. The specification of the model
states that we assume the two kinds of mistakes to be independent of the state of the
process. Bergin and Lipman [3] show that this assumption is of ‘crucial” importance,
meaning that allowing for 7-mistake probabilities or e-mistake probabilities to differ

across states and in particular to go to zero at different rates would change the results
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significantly. Indeed, by choosing the mistake probabilities appropriately, the <B, %) -
convention may even become the unique stochastically stable state. Van Damme and
Weibull [6], however, restore the result that in 2 x 2 coordination games the risk-
dominant equilibrium will be selected in the long run by considering endogenously
determined mistake probabilities. More precisely, they consider a model where players
can control the probability of making a mistake at some costs. As players will try
harder to avoid mistakes leading to larger payoff losses, the mistake probabilities
depend on the state of the process. They show that mistake probabilities nevertheless
go to zero at the same rate when the costs become negligible.

Finally, we make two remarks concerning the deterministic part of the dynamic
process. First, instead of assuming that a player can observe the pure strategies of
all potential links independently of whether or not he is linked with them, we could
alternatively consider the case that a player is only able to observe the pure strategies
of the players he is currently linked with. The decision to establish a new link could
then be based on comparing the maintenance costs with the expected payoff in the
coordination game, where the expected payoff is given by a player’s average gross
benefit in the last period. We conjecture that coexistence of conventions in the long
run will no longer be possible when this specification of the deterministic part of the
dynamic process is used. To motivate this point, notice that the state illustrated in
Figure 1 will no longer be a steady state of adaptive play without mistakes. Namely,
adjacent A-players and B-players will establish a link if given the opportunity. As
can be concluded from the proof of Theorem 4, the result that the (A, %)—convention
is the unique stochastically stable state of adaptive play with mistakes remains true
for this alternative specification.

Second, the deterministic part of the process is characterized by sequential decision
making of the players. In the first stage of a period players are concerned with the
network formation process and in the second stage players decide upon their pure
strategies in the coordination game. Considering players who decide on links and
pure strategies simultaneously would, however, not significantly change any of the
results. Convergence to an absorbing state of adaptive play without mistakes can
still be obtained because simultaneous decision making does not decrease the degree
of randomness in the model. Furthermore, adaptive play with mistakes will still
converge to the risk-dominant convention as the size of the basins of attraction does

not change significantly.
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We adapt a measure introduced by Ellison [8] to illustrate the extent to which

play resembles its long run limit. The long run limit with mistakes is characterized
by the (A, 2)

v
as it resembles its long run limit in the action of players and leave the graphical

-convention. For the simulations reported below, we only examine play

examination for future research. We denote the number of players playing A at
time k as A(a;x) and note that this does not indicate the extent to how nearly the
interaction network resembles its long run limit. W (N, 7, ¢, a) is the expected waiting
time until at least 1 — « of the players simultaneously play A given that everyone

starts off playing B, i.e.,
W(N,7,e,a) = E(min{k|A(a;x) = (1 — a)N}|a;o = B).

Tables I lists the observed values of W (N, 7, ¢, ) indicated by WE(N,7,¢,a) for
the endogenous interaction model such that all players initially play B and that the
initial network is randomized, i.e., the starting condition is determined by a random
network. In Table I-A we consider the coordination game described by a =2, b =1,
and ¢ = d = 0. In Table I-B we consider the coordination game given by a = 4, b = 5,
¢ =3, and d = 0. (We refer to the first set of payoffs as Game 1 and the second set
of payoffs as Game 2.) Both sets of payoffs induce a player to play strategy A if at
least % of his interaction neighborhood play A. In both games A is the risk dominant
equilibrium but in Game 2 B is Pareto superior to A. This is not the case in Game
1.

T=e=002|7=e=005|7=¢=0.1
71.262 43.853 30.591
N=10 [4705] 133.5] 28]
(71.31) (33.467) | (15.705)
527.999 272.438 105.405
N =20 (510] 233.5] 73]
(304.428) | (195.144) | (90.489)
3762.491 3340.933 1181.522
N =50 3713] 3253.5] 1129]
(699.923) | (704.659) | (563.383)
19600.22 17876.0 11132.06
N=100| [19553] 17826] 11201.5]
(1973.643) | (2481.601) | (2387.776)
Table I-A: Observed W (N, 7,¢,0.25) for Game 1
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In Table I-A we denote by IV the population size, € the probability of a mistake in the
selection of actions, and 7 the probability of a mistake in link formation. All waiting
times reported are until 75% of the players play A simultaneously. The mean waiting
times are reported first, the median waiting times are given in square brackets, while

the standard deviation is given in parentheses.

T=e=0025|7==005|7=¢=0.1

* 221.108 39.926
N=10 * 135] 130)

* (442.426) | (48.626)

* 947.117 140.79
N =20 * [676] (78]

* (975.1461) | (145.0575)

* 5066.152 1637.692
N =50 * [4861.5] 1598]

. (1739.067) | (819.478)

* * 16792.38
N =100 * * 16494.5]

* * (4798.067)
Table I-B: Observed WE(N, ,¢,0.25) for Game 2.

The waiting times reported in Table I-B are generated under similar conditions as
those reported in Table I-A. In Table I-B the indication * refers to waiting times that
average more than 30,000 iterations. These long waiting times are not feasible within
the software application.

Tables II-A and II-B list the observed values of WE(N, 7, ¢, a) for the endogenous

interaction model such that initially all players play the risk dominated convention
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B and the initial interaction network is the empty one.

T=e=002|7=e=005|7=¢=0.1
8.69 9.904 13.058
N =10 (7] 8] [10]
(11.302) (9.596) (11.05)
14.127 15.902 23.464
N =20 [13] [15] [19]
(3.608) (5.385) (18.104)
35.769 40.611 58.183
N =50 35] [39] [50]
(5.611) (8.656) (27.342)
68.087 77774 106.75
N =100 68] [76] 101]
(7.222) (12.09) (29.77)
Table IT-A: Observed W (N, 7,¢,0.25) for game 1

Again the reported waiting times are until 75% of the players play A. The mean
number of iterations is reported first, followed by the median number of iterations in
square brackets, and the standard deviation in parentheses.

For the observed number of iterations with initially the empty network are re-
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ported in Table II-B:

T=e=002|7=e=005 | 7T=e=0.1
39.783 11.791 14.071
N =10 (7] 8] [10]
(445.963) (30.827) | (11.554)
14.95 17.074 22.259
N =20 13] [15] 19]
(5.465) (9.054) (11.345)
35.733 41.459 58.44
N =50 35] [39.5] [51]
(5.63) (13.231) | (28.348)
68.31 76.695 108.957
N =100 67] [75] 101]
(7.244) (11.597) | (33.203)
Table II-B: Observed WE(N, 7,¢,0.25) for game 2.

The difference between the number of observed iterations with a random network
— reported in Tables I-A and I-B — and an empty network — reported in Tables
II-A and II-B — is caused by the inertia in the network formation process. Because
the deterministic part of the process is characterized by a sequential decision making
process, on average the random network will have too many links that are relatively
costly and, therefore, have to be severed. However, until those links are severed, they
are part of the interaction neighborhoods of the players involved. This is causes a
higher number of iterations necessary to converge the evolutionary process.

In general, as the mistake probabilities increase, the dispersion of the expected
waiting time decreases, as does the expected waiting time. Both of these observations
are consistent with what we expect. The more likely a mistake occurs, the more likely
the process will enter an absorbing state for the (A, %)—convention. Considering that
the deterministic part of the process is characterized by sequential decision making

of the players, it is not surprising that convergence seems dependent on network size.

n(n—1)
2

As a rough proxy we divide the observed average number of iterations by the number

Consider that at a minimum periods must pass for each pair of players to meet.

of possible links. For example, from the reported values in Table II-A for Game 1
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initiated with an empty network and mistake probabilities 7 = ¢ = 0.025 we compute

WE(10,7,e,0.25)

e — 1.8,
WE(20,7.2,0.25
WE( T ) _ 9w,
50, 7,€,0.25
SR~
W (102%68,0-25) — 3.96.

These values indicate the average number of times all links are queried for at least
% of all players to play the risk dominant convention A given that everyone initially
plays B. It is not surprising that the average number of times each pair needs to be
queried increases with the number of players. This is caused by the assumption that
all relevant pairs are queried in a random order. Another reason for the increase in
the waiting times is that perhaps a pocket of the risk dominated equilibrium persists
and coexists for a substantial amount of time. The probability of such an event would
increase with the number of players.

Finally, we tested whether the threshold of a convergence rate of 75% is a rea-
sonable proxy for complete convergence. We performed a set of simulations where
a = 0, meaning that the measured number of iterations were for the stopping rule
that 100% of the players play A when initially all players play B. The observed
number of iterations on average only exceeded the reported values in Tables I-A, I-B,

n(n—1)

[1-A and II-B by approximately half the number of potential links —==—

6 Concluding Remarks

We have analyzed a large population coordination game where not only the actions of
the players but also the communication network is subject to evolutionary pressure.
Cost considerations of social interaction are incorporated by exploiting the spatial
structure of the model, i.e., the costs of interacting increase in the distance between
two players on the circle.

The Markov process without mistakes describing medium-run behavior is shown
to converge to an absorbing state, which may be characterized by coexistence of
conventions. In the long-run, when mistakes are possible with small but nonvanishing

probabilities, coexistence of conventions is no longer possible as the risk-dominant
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convention is the unique stochastically stable state. These results require that ¢, d =
v. If ¢,d < 7, i.e., mismatched pairs obtain net losses when making links with their
closest neighbors, we conjecture that we would obtain a similar insight as the second
main theorem (Proposition 2) of Jackson and Watts [15]. That is, we would expect
to see both coordination equilibria as stochastically stable states.

Interesting topics for future research are as follows. First, considering a larger class
of games, see e.g. Kandori, Mailath and Rob [17] and Young [24], in the framework
of the present paper. Second, extending the model to also allow for players who are
indirectly connected to play a game as is common practice in the literature on network
formation. When value is given to indirect connections, other types of networks could

be generated with perhaps other implications.

7 Proofs

7.1 Proof of Theorem 2

To explore the conditions under which adaptive play without mistakes converges to
an absorbing state, we develop the two lemmas. We define the set S C S by

S’::{SGS

a; € argmax; (a;,ar,) for alli € N} ,

a;

i.e., the set S contains all states s € S such that all players i € N choose a pure
strategy that results in the highest possible gross benefit, given the current pure-
strategy profile of the players in their neighborhood. Lemma 5 specifies a condition
on the size of the population under which adaptive play without mistakes becomes
contained in S with positive probability in a finite period of time. Let |z | denote the
greatest integer smaller than or equal to z.

Lemma 5 Assume that L%J > max{%,%}. Then for any state s € S there is
a probability p, > 0 that adaptive play without mistakes reaches a state § € S in
K, < oo periods.

Proof. Consider a state s € S and a player « € N. With positive probability player

¢ is matched with a player j € N such that ¢ # j and ¢;; > max{%, %} Notice

that for every player ¢ € N, existence of such a player j is guaranteed because we
assume that |2| > max{%,%
mutual link. Furthermore, if a mutual link was already present, then it will definitely

Obviously, players 7 and j will never establish a
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be severed. After that, both players will adapt their pure strategy and, as they no
longer belong to each other’s neighborhood, end up choosing a pure strategy that
results in the highest possible benefit given the current pure strategies of the players
in their neighborhood.

Consider the positive probability event of successively matching all players ¢ € N
in the way specified above. Notice that player ¢ changing his pure strategy may imply
that players in his neighborhood, who have already undergone the above procedure,
no longer choose a pure strategy that results in the highest possible benefit given the
current pure-strategy profile in their neighborhood. We restore this characteristic
for the involved players by means of the positive probability event of once again
matching all of them in the same pairs as before. Obviously, this may in turn result
in other players, who have already undergone the above procedure, no longer playing
optimally given the current pure-strategy profile in their neighborhood, and so on. It
therefore remains to be shown that such a restoration process will terminate in finite
time.

Suppose player ¢ changes his pure strategy and becomes an A-player. As the
restoration process does not include any link formation or link severance and a — ¢ >
d — b, the change by player ¢ makes pure strategy A more attractive for all players
involved in the restoration process. Consequently, all involved A-players will definitely
remain A-players, while involved B-players possibly become A-players. Since we have
a finite number of players such a restoration process terminates in finite time. A
similar argument holds when player ¢ becomes a B-player. [

Lemma 6 in turn states that, starting from a state which is contained in S, adaptive
play without mistakes converges to an absorbing state with positive probability in a
finite period of time.

Lemma 6 For any state s € S there is a probability gs > 0 that adaptive play without
mistakes converges to an absorbing state in Ly < co periods.

Proof. Consider a state s € S and a player i € N. Suppose player ¢ is an A-player,
i.e., a; = A. With positive probability player i is successively matched in pairs with
all players j € N such that j € L;}, a; = B, and ¢;; > % Since the costs ¢;;
are strictly larger than the payoff % to player ¢, all links between player ¢ and these
players j will be severed. Because b > ¢ this dynamic process of link severance implies
that m; (A, @Li’k,kfl) decreases less than (B, aﬁi,lmk*l)? causing player ¢ to remain
an A-player. Furthermore, all players j remain B-players (when their link with player
i is severed) due to the fact that a > d causes 7; (B, ac,, »-1) to decrease less than
T j (A, &Lj’k’kfl) .

We continue with the positive probability event that player ¢ is successively
matched in pairs with all players j such that j € £; 4, a; = A, and ¢;; > % Since
costs ¢;; exceed payoffs % for these pairs of players, all links between player ¢ and
players 7 will be severed. Notice that at some point during this dynamic process of
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link severance, player ¢ may become a B-player because a > d, i.e., 7; (A, agi’hk_l)
decreases more than ; (B, aﬁi,k’k71>. First, consider the case that player 7 is an A-
player when he severs the link with a player j. Since a > d, the severance of this link
may cause player j to become a B-player. This in turn may cause that A-players
in the neighborhood of player j also want to become B-players, and so on. It can
easily be verified that successively matching all the involved players in pairs, which
is a positive probability event, results in a dynamic process only consisting of players
changing their pure strategy from A to B and possibly severing their mutual link.
Obviously, such a dynamic process will terminate in a finite number of steps and
result in a state contained in S. Notice that player i may also be one of the players
who changes his pure strategy from A to B in the above dynamic process.

Second, consider the case that player i, because of one of the two reasons men-
tioned above, becomes a B-player while he is severing links with the players j. With
positive probability player ¢ is successively matched in pairs with all players j € N
such that j € L; %, a; = A, and ¢;; > %. Since a > d, this includes all players j such
that j € Lk, a; = A, and ¢;; > % All these links will be severed because the costs c;;
are strictly larger than the payoff % to player ¢. Furthermore, player ¢ and players j
who are involved in this dynamic process will not change their pure strategy because
a > d and b > c, respectively.

The above argument shows that a player ¢, who is initially an A-player, will
become an A-player such that

[aj:Aandcij>%] =37 ¢ L,

[aj:Bandcij>ﬂ =jé L,
for all j € N with i # j, or a B-player such that

[aj:Aandcij>%] =7 & Ly,

(8)
[CL]' = B and Cij > %} =7 ¢ £i,

for all j € N with ¢ # j, with positive probability and in finite time. A similar
argument can be used to show that this also holds for a player ¢ who is initially a
B-player. In fact, starting from any state s € S, we attain a state § € S such that all
players i € N simultaneously satisfy either (7) or (8) with positive probability and in
finite time. Such a state can actually be attained by successively applying the above
dynamic process to all players ¢ € N.

Notice that the interactive effects may cause that players at some point in time no
longer satisfy (7) or (8) even though the dynamic process has already been applied
to them. For these players the dynamic process has to be repeated. However, due to
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the fact that the dynamic process does not include any link formation and, in case
no links are severed, only consists of players changing their pure strategy in the same
way, this can only happen a finite number of times.

Now consider a state § € S such that all players satisfy either (7) or (8) and
there exists a player ¢ € N such that a; = A. With positive probability player i is
successively matched in pairs with all players j € N such that j ¢ L%, a; = A,
and ¢;; < 2. Obviously, not only will all these pairs of players establish a link, but
also will none of the involved players change his pure strategy. We continue with
the positive probability event that player ¢ is successively matched in pairs with all
players j € N such that j ¢ L;, a; = B, and ¢;; = % Again, all pairs of players
will establish a link, which may possibly cause players to change their pure strategy.
In fact, players ¢ and players j may become B-players and A-players, respectively.
As explained before, however, every time that link severance, or link formation for
that matter, causes a player to change his pure strategy, the subsequent dynamic
process of changing pure strategies by other players will terminate in finite time with
positive probability. In case player ¢ actually becomes a B-player, we continue with
the positive probability event that player ¢ is successively matched in pairs with all
players j such that j ¢ L, , a; = B, and ¢;; < , and all players j such that j € £, ;,

aj = A, and d < v - ¢;; < a, which obviously only results in link formation and link
severance, respectively.

The above argument shows that a player 7, who is an A-player in a state § € S,
will become an A-player such that

(

CLj:A:> jELZ@CU§

2|
L )

CL]‘:B:> ]€£Z<:>Czj§

=20
L )

\

for all j € N with ¢ # 7, or a B-player such that

,

=A= jEﬁi@Cijé

= |
L )

(10)

aj:Bi jeﬁiﬁqj§% ,

for all 7 € N with ¢ # j, with positive probability and in finite time. A similar
argument can be used to show that this also holds for a player ¢ who is a B-player in
a state § € S. Furthermore, starting from a state § € S, we attain a state such that
all players i € N simultaneously satisfy (9) or (10) with positive probability and in
finite time. In that case, no single players wants to adapt his pure strategy or sever
any of the links he is involved in, and no pair of players wants to establish a mutual
link, which implies that we have attained an absorbing state of the Markov process.

Like before it may happen that in order to attain an absorbing state from a
state § € S, the dynamic process described above has to be applied repeatedly to
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some players. However, because of the following two reasons this can only happen
a finite number of times. First, the part of the dynamic process dealing with link
severance does not result in players changing their pure strategies. Second, parts
of the dynamic process that do consist of players changing their pure strategies will
always terminate in finite time with positive probability as they only involve changes
in the same direction. [

Now, we are able to prove Theorem 2 which specifies the condition on the size of
the population under which convergence of adaptive play without mistakes can be
guaranteed almost surely.

Theorem 2 Assume that L%J > max{%,%}. Then for any initial state sy € S

adaptive behavior without mistakes converges almost surely to an absorbing state.

Proof. Lemma 5 states that for any state s € § there is a probability p, > 0 that
adaptive play without mistakes will be given by a state s € S in K, < oo periods,

provided that EJ > max {%, %} According to Lemma 6, for any state s € S there

is a probability ¢, > 0 that adaptive play without mistakes converges to an absorbing
state in L, < oo periods.

Note that S is finite. Let p = minsesps > 0, ¢ = min 5, > 0, K = max,cs K, <
oo, and L = max,.gL, < oo, it follows that there exists a positive integer M =
K + L < 00, and a positive probability r = pg > 0, such that from any initial state

sg € S, the probability is at least r that adaptive play without mistakes converges to

n

2
both M and r are time-independent and state-independent. Let m be an arbitrary
integer. Hence, the probability of not reaching an absorbing state after at least mM
periods is at most (1 — 7)™ . This implies that this probability goes to zero as m — oo.
[

an absorbing state within M periods, provided that L J > max {%, %} Obviously,

7.2 Proof of Theorem 4

Lemma 7 Assume that the transition matrixz P is irreducible and aperiodic. Then
the stationary distribution ¢ is unique. Furthermore, for any v € Ajg_1,

vP* — ¢ as k — oo.

Also, for all initial states sg € S,
| K
174 ZXS (sx) — ¢, almost surely as K — oo,
k=1

where

1 it s =s,
X (sk) = { 0 otherwise.
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(See Theorem 1.2 and Theorem 1.3 in Chapter 3 of Karlin and Taylor [18])

We write r (2) for a successor of state z in the Markov process describing adaptive
play without mistakes. Obviously, 7 (z) is not uniquely determined since it depends
on which pair of players can alter their (potential) mutual link and adapt their pure
strategies. For this reason we write

o(a2) (- (33))

for the basin of attraction of the (A, %)—convention. Hence, the basin of attraction

D <A, %) consists of the states that will eventually be taken to the (A, %)—convention

by adaptive play without mistakes.

To determine what the stationary distribution looks like when mistake probabil-
ities go to zero, we need the following two lemmas. Lemma 8 gives upper bounds
for the number of 7-mistakes and e-mistakes that are needed to enter the basin of
attraction of the (A, %)-convention with positive probability.

Lemma 8 Letx ¢ D <A, %), Y1, Yy ¢ D (A, %), andy € D <A 9). There exists

Ty
a transition from x to y via vy, ...,yg such that

Pﬂﬁyl (T7 5) ' H Pyhyh+1 (T7 6) ’ PyH?J (T7 5) > 07 (11)

where (11) is of T-order and e-order at most 0 and n, respectively.

Proof. To prove Lemma 8 it suffices to show that D (A, %) can be reached from any

state with positive probability using at most n e-mistakes. First, let the population
size n be even. Consider the positive probability event of successively matching
players i and ¢ + 1 in pairs, where i = 2j—1 and j = 1, ..., 5. Every time a player has
the opportunity to update his pure strategy, he chooses A. Obviously, this requires
at most n e-mistakes and leaves us with a state y € D <A, %)

Second, let the population size n be odd. Consider the positive probability event
of successively matching players ¢ and ¢41 in pairs, where i = 2j—1and j = 1, ..., ”T_l
Again, all players involved in this positive probability event choose pure strategy A
whenever they have the opportunity to update their strategy. This requires at most
n — 1 e-mistakes and leaves us with a state such that a; = Aforall:=1,....n— 1.
Now, we continue with the positive probability event of matching player n with an
A-player i* € {1,...,n — 1}, where player i* is an A-player who is linked to at least one

other A-player. Notice that existence of such an A-player can always be established
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without the need for any additional mistakes. Then, at most one more e-mistake is
needed for player n to become an A-player, while player ¢ will remain an A-player.

Again, we have reached a state y € D ( A, % using at most n e-mistakes. [

Lemma 9 gives a lower bound for the total number of mistakes in a certain product

of transition probabilities. All transition probabilities contained in the product refer
to transitions which are specified by an z-tree t, with ¢ D (A, %), and which start

from a state in the basin of attraction of the (A, %)—convention.

Lemma 9 Let n = 3. The sum of the T-order and e-order of

[ Puw(re)>0,

sGD(A,%)

with t an x-tree such that x ¢ D <A, %), is at least n + 1.

Proof. First, consider the state s = (A, %) e D (A, %) Obviously, any path

starting in the <A, %)-convention and eventually leaving D (A, %) contains at least
one e-mistake.
Second, consider a state s such that (i) every player ¢ € N is linked with his two

adjacent neighbors, i.e., every player ¢ € N is linked with all players j # ¢ such that
min {[j —d[,n —[j —i[} =7,

and (ii) there is exactly one player i such that a; = B. Obviously, such a state s

is contained in D (A, % when n 2 3 and there exist exactly n different states that

satisfy the conditions (i) and (ii). Furthermore, any path starting in such a state s and

eventually leaving D (A, %) (or reaching another state satisfying conditions (i) and

(ii)) contains at least 1 mistake (either a 7-mistake or an e-mistake). Hence, we know
that the sum of the number of 7-mistakes and e-mistakes in [, D(4,2) Py (1,€) is
at least n + 1. ]

£

Theorem 4 Let n = 3. If 0 <lim,. 0% < oo, then lim,. o qb(A a) (1,6)=1.
Ty

Proof. The characterization as specified by (5) allows us to express the quantity
¢, (7:€)

¢( ) oo asa ratio of polynomials in 7 and ¢ for any state x. To prove Theorem 4
AL)t

it is sufficient to show that for n sufficiently large, i.e., n = 3, it holds that

6,9

=0
"0 G g2) (7:9)

26



for all z # (A, %) . This will follow if we demonstrate that for any x-tree t (a: #+ (A, 2))
such that []_, P (7,€) > 0, we have

Hs;é:r Pst(s) (7—7 5)
(3 er(ag) P (7:€)

This in turn follows if we show that there exists an (A, a)-tree ¢’ such that

Il Pvw(re)>0

Aa)

=0.

lim
T,e—0 Zt'eH

and
. [oe Pot(s) (7€)
lim

=0 Lz (a2) Povis) (T:€)

—0. (12)

We show that (12) holds by distinguishing two cases.
First, assume that € D (A, %) Define t' by

P () = r(z) 1fZED<A,;),
t(z) otherwise.
Notice that ¢’ is an (A, %)—tree because for any state z the path described by t'
initially coincides with ¢ and hence eventually enters D (A, %) From the first point
at which ™ (z) € D (A, %), the tree maps every point to a successor according to

adaptive play without mistakes and hence reaches (A, %) In this case the ratio

specified in (12) equals

P(A E)t((A ﬁ)) (T7 6) H o). Pst(s) (7—7 5)

iy )y

Pm(w) (T, 5) H Psr(s) (T, 6)
sen(a2)-{(42)a)

The above expression converges to 0 as 7,6 — 0 because Py (T,€) /Pars) (T,€) is
bounded, P(A ﬂ)t((A g» (7‘,5) — 0, and er(m) (7‘, E) — &> 0.
77 77
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Second, assume that x ¢ D <A, %) Define t’ by

r(z) ifzeD(A4,2),

t(z) itz¢ D A,% ,z#x,and 2 £y, ..., YH,
Y1 le:l',
Y2 if 2z =y,

ya it 2=y,

where y1,...,yg ¢ D (A, %) and y € D ( %) are as specified in Lemma 5.5. Obvi-

ously, ' is again an <A, %)—tree. In this case the ratio specified in (12) equals

H-1
[T Pag (1,8) - T Putn) (7,€)
seD(A,g) h=1
ny1 ( ) H YnYh+1 (Tv 5) PyHy (T 5) : H PST(S) (7_7 5)

seD(4.5)-{(4.5)}

Because of Lemma 8 and the fact that Pi.(s) (7,€) — p© > 0, the denominator is of
7-order 0 and of e-order at most n. According to Lemma 9, the numerator is of a
higher total order if n = 3. Consequently, the above expression converges to 0 as long
as 0 < lim, . oI < oo. [ ]
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