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Abstract

We consider an economy in which agents are embedded in a network of potential

value-generating relationships. Agents are assumed to be able to participate in three

types of economic interactions: Autarkic self-provision; bilateral interaction; and mul-

tilateral collaboration.

We introduce two stability concepts and provide su�cient and necessary condi-

tions on the network structure that guarantee existence, in cases of the absence of

externalities, link-based externalities and crowding externalities. We show that in-

stitutional arrangements based on socioeconomic roles and leadership guarantee sta-

bility. In particular, the stability of more complex economic outcomes requires more

strict and complex institutional rules to govern economic interactions. We investigate

strict social hierarchies, tiered leadership structures and global market places.
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1 Stability in a network economy

Stability is universally accepted as a desirable feature in economic analysis. In this paper

we study institutional arrangements that facilitate the emergence of stable outcomes and,

thus, can be seen as promoters of economic development and growth. Instability, on the

other hand, is manifested in a dysfunctional institutional organisation of the economy.

For economists, stability implies not only predictability, but also gains in happiness

through the reduction of uncertainty and risk (Dehejia, DeLeire, and Lu�ment, 2007) and

is generally seen as being conducive to economic growth. For example, Mobarak (2005)

provides empirical evidence on the relation between (in)stability and economic growth.

Institutions can be considered to provide stability if they facilitate the emergence of stable

outcomes, surviving long-term evolutionary change of preferential tastes and productive

abilities and technologies.

For a stable outcome of economic interactions to emerge, our study shows that insti-

tutional arrangements based on hierarchical leadership and market making might restrict

interactions among agents, but on the other hand facilitate the emergence of a stable state

or outcome in the economy and, thus, function as “stabilisers”. Institutions identi�ed here

as stabilisers in our stylised economy are thus ful�lling a mechanistic role in the evolution

of human organisation as discussed by Stoelhorst and Richerson (2013). Our analysis is

also in accord with Kaufman’s (2003) theory of economic organisation that builds on the

writings of John R. Commons. �ese authors postulate the necessity of institutional rules

which prescribe the domains of decision making. Here we provide a formal proof that such

rules are both necessary and su�cient to ensure stability.

We also discuss in what sense our analysis implies the stability of these institutions

themselves. Indeed, institutional arrangement like social hierarchies and market making

persist throughout human history, since these support and promote stability. Our formal

theorems provide a mathematical foundation for this.

We also see our work as complementary to studies of the co-evolution and endogeneity

of culture as institutional rules and economic activities (Frederking, 2002; Kuran, 2009).

In our formal theory, we de-couple the stabilising function of institutional rules from the

content of the economic activities. �us, we not only gain more universal applicability, but

we also identify institutional rules which function robustly in a changing environment of

economic activities, albeit within the domain of the type of economic outcomes on which

we focus here.

Turning to our formal model, we consider an economy consisting of economic agents

who are embedded in a network of potential value-generating relationships. �e generated

gains from interaction are modelled as (hedonic) utility values over the possible economic

activities in which these agents can engage as prescribed by the network. �e restrictions

implied by the network are interpreted as institutional rules that govern the underlying
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engagement of agents through the prescribed economic activities.

We use straightforward extensions of standard stability notions from matching theory

(Roth and Sotomayor, 1990) and network formation theory (Jackson and Wolinsky, 1996)

to de�ne stability in two stylised economic systems. First, we consider a matching econ-
omy that is founded on bilateral interactions only. Subsequently, we extend our se�ing

to include multilateral interactions, where individuals can engage with multiple partners.

Such multilateral interactions are akin to multi-sided platforms as considered by Hagiu

and Wright (2011) and Evans and Schmalensee (2013) in the context of market theory, ex-

tending the seminal work by Rochet and Tirole (2003, 2006) and Evans (2003).

We subsequently identify conditions on the network structure underlying the econ-

omy that guarantee the existence of stable bilateral and multilateral outcomes, respectively.

�ese conditions clearly point to institutional features of the underlying network of po-

tential relationships as representing the social capital instilled in these networks (Portes,

1998; Dasgupta, 2005). In particular, in the case of bilateral economic outcomes, we iden-

tify the stabilising e�ects of imposing binary socioeconomic roles such that all economic

activities are restricted to occur between agents of two distinct roles. In this respect our

work is related to that of Jackson and Wa�s (2008) who discuss the su�ciency of two dis-

tinct market roles for the existence of stability in what in our terms is a bilateral economy.

We strengthen their results in this context by showing that this condition is both su�cient

and necessary.
1

From this viewpoint, institutional functionality is more closely related to

a development process based on the deepening of the social division of labour, in the sense

of Smith (1776) and his predecessors (Sun, 2012).

Regarding the stability of multilateral economic outcomes, we identify the necessity of

the absence of certain cycles in the underlying network which correspond to the implemen-

tation of certain social hierarchies in the represented society. �erefore, macroeconomic

properties—described by rules of social authority and hierarchy—are not simply aggregates

of microeconomic features, but are “emergent” at the level of the social, institutional gov-

ernance system in the economy. �is interpretation is similar to the notion of emergence
in a macro economy as put forward by Wagner (2012). Indeed, Wagner’s contention is that

such institutional rules of economic conduct and interaction are explanatorily irreducible in

the sense that these rules cannot be devolved to the level of the individual decision makers

in the economy.

It is worth pointing out that here we depart from other game-theoretic approaches to

the study of stability of institutions that take a dynamic (Goyal and Janssen, 1995) or evo-

lutionary (Sugden, 1995) approach. Our work, instead, treats institutional arrangements

1
�ese authors also consider an environment with multiple roles and multilateral outcomes. �eir setup

di�ers from ours as we take a network approach. In their multilateral context Jackson and Wa�s (2008) only

provide an example of non-existence of equilibrium whereas we can characterise the necessary and su�cient

conditions on the network for the existence of a stable outcome.
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as facilitators of economic activity: �ey provide a well-founded environment in which

such activities emerge. Here stability is treated as an intrinsic property of the topology of

economic opportunity.

We also distinguish our work from the transaction costs literature, e.g., Coase (1937);

North and �omas (1973); Williamson (1975); North (1990); and Greif (2006), where in-

stitutions are usually understood as devices that lower market transaction costs. Lower

transaction costs in turn result into increased market e�ciency and consequently eco-

nomic growth and development. On the other hand, our approach takes these institutions

as ��ing speci�cations of underlying network properties and brings out their functional

role as stabilisers of economic activity.

Furthermore, our work is also related to the literature on theories of economic interac-

tion on network structures as developed by Kranton and Minehart (2000) and Bramoullé

and Kranton (2007). �ese studies develop a purely non-cooperative game theoretic per-

spective and seek to characterise the resulting equilibrium states. Instead, our study fol-

lows the cooperative game theory tradition, being more normative in nature and seeking to

answer the question under which institutional con�gurations stability is guaranteed. Our

approach also di�ers in the nature of the stability notion: Non-cooperative game theory

approaches employ Nash-like equilibrium concepts. Here, we adopt a notion of stability

which describes cooperative structures that emerge through collaborative formation pro-

cesses. We view our analysis as complementary to that conducted in this literature.

To show the principles of our approach, we next present some simple examples and

debate the concepts that are required to describe the endogenous emergence of stable eco-

nomic outcomes.

1.1 A motivating example: A hunter-gatherer economy

In this paper we investigate the institutional conditions for universal stability in the sense

that for every pa�ern of generated consumptive and productive values there exists a sta-

ble outcome. We model these institutions as rules that determine the feasible interaction

between economic agents.

To illustrate this we consider here the most primitive economic environment, namely

that of a hunter-gatherer society. �e institutional foundation of all economic interaction

is based on the clear separation of individuals through two socio-economic roles namely that

of a hunter and a gatherer. �e anthropological and economic literature recognises that the

social division of labour based on these hunter-gatherer roles has been at the foundation

for the initial success and survival of the human species. �is research also indicates that

it is correct to think of hunters as male and gatherers as female. We refer to Arnold (1993),

Flores (1998), Kuhn and Stiner (2006) and Nakahashi and Feldman (2014) for more elaborate

a discussion of this.
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For ease of the discourse, a bilateral interaction between one hunter and one gatherer is

thought of as representing a “household”. �e institutional framework of a hunter-gatherer

society thus results in networks of feasible bilateral interactions, or households.
2

�e ben-

e�ts that individual agents potentially receive from interacting are summarised through

hedonic utilities de�ned over all feasible households.

We assume throughout that every agent can participate in at most one household. A

bilateral interaction pa�ern is stable if (i) there is no agent who prefers to remain in autarky

rather than form the bilateral interaction in the proposed pa�ern (“individual rationality”);

and (ii) there is no hunter-gatherer pair who can and prefer to form that interaction rather

than conform to the assigned pa�ern (“pairwise stability”). We claim now that in a hunter-

gatherer economy, regardless of the values generated in these activities, there always exists

a stable bilateral interaction outcome.

b

a

c

d

e

Figure 1: Network structure A

In Figure 1 we consider an example of a society of 5 individuals N = {a,b,c,d,e}, who

have assumed the role of hunter and gatherer. In particular, we let individuals a, c and d
be hunters—represented by the white nodes—while b and e are assumed to be gatherers—

represented by the gray nodes. Network A now consists exactly of all feasible bilateral

interactions represented as links between hunters and gatherers.

To focus on the issue of stability, we abstract away from the actual content of the eco-

nomic interaction itself and use, instead, hedonic values directly. Note that these hedonic

utilities are determined also by the socio-economic roles of the agents considered. Hence,

these utilities re�ect that a hunter and a gatherer are specialised in di�erent productive

tasks and that the outputs of these activities are shared in the resulting bilateral interac-

tion. �e notion of hedonic games in the context of coalition formation was seminally

introduced by Drèze and Greenberg (1980) and further studied by Bogomolnaia and Jack-

son (2004), Banerjee, Konishi, and Sonmez (2001), and Pápai (2004), among others.
3

We

2
Similarly, in network games agents can only generate economic surplus if they have a link in the network

structure, cf. Kranton and Minehart (2000).

3
One can also treat these hedonic utilities as being generated by an exchange of goods (Howi� and Clower,

2000), gi�s (Akerlof, 1982), favours (Neilson, 1999), or collaborative interactions in clubs (Scotchmer, 2002).
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point out that what distinguishes our work from those contributions studying coalition

formation games is that we employ a network approach.

For network structure A, we claim that for any pa�ern of hedonic utility values gen-

erated in the identi�ed bilateral interactions there exists at least one stable interaction

pa�ern. For example, let the generated hedonic utilities be given in Table 1.
4

a b c d e

a 0 2 – – 1

b 1 0 2 2 –

c – 1 0 – 2

d – 1 – 0 2

e 3 – 1 1 0

Table 1: Hedonic payo�s in Network Structure A.

For agent a, ua (ae) now represents the hedonic utility that hunter a gets from se�ing

up a household with gatherer e. For the values given in this example there emerge two

stable outcomes: π1 = {ae,bc,dd} and π2 = {ae,bd,cc}. In fact, our main result �eorem

3.6 implies that for every distribution of hedonic values in network structureA there exists

a stable household pa�ern.

An institutional cause of instability. Next consider an alternative institutional struc-

ture on the population N = {a,b,c,d,e}. Besides the roles of hunter and gatherer, we now

introduce a third socioeconomic role, namely a chie�ain. �e chie�ain acts as a communal

leader, who has potential bilateral relationships with all other members of the society.
5

A

network structure that satis�es this institutional framework is depicted in Figure 2, where

c is a chie�ain; a and d are hunters; and b and e are gatherers. Two potential households ab

and de are now supplemented with all hunter-gatherers having a bilateral value-generating

interaction with the chie�ain c.
Network structure B violates the binary institutional hunter-gatherer framework: One

cannot assign hunter-gatherer roles to these 5 agents without violating the institutional

rule that only households between agents in di�erent roles can be formed. Indeed, in

Figure 2, agent c is interacting with all other agents, while also interactions ab and de
exist. �is prevents the proper assignment of two roles to {a,b,c} which justi�es these

interactions as households.

4
�is matrix actually represents the incidence matrix of network structure A in which potential payo�s

are reported instead of an indicator of connectedness. �e number reported in �eld (i, j ) is ui (ij ). Similarly,

the �eld (j,i ) reports uj (ij ). If no relationship can be formed, no payo� is reported, indicated by “–”. Note

that we have normalised the hedonic value of autarky to be 0, i.e. for all i ∈ N , ui (ii ) = 0.

5
�e emergence of such leadership in primitive hunter-gatherer societies has been investigated in Red-

mond and Spencer (2012) and Baker, Bulte, and Weisdorf (2010).
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e

Figure 2: Network structure B

We claim that in network structure B there is at least one pro�le of hedonic utilities

for which there does not exist a stable bilateral interaction pa�ern. Indeed, consider the

hedonic utility values of all potential interactions in B given in Table 2.

a b c d e

a 0 2 1 – –

b 1 0 2 – –

c 2 1 0 2 1

d – – 1 0 2

e – – 2 1 0

Table 2: Hedonic payo�s in Network Structure B

We now claim that for these given values there does not exist a stable bilateral outcome in

B. For example, consider the outcome π ′ = {ab,cd,ee}, then both agents d and e would

prefer to form interaction de rather than being engaged with c and being autarkic, respec-

tively. Other bilateral interaction pa�erns can be shown to be unstable as well.

�is example illustrates the inherent stability of hunter-gatherer societies. In particular,

�eorem 3.5 shows that all potential value-generating bilateral interactions have to be

based on the assignment of two roles. Any violation of this institutional framework—such

as considered in Figure 2—would make it impossible to guarantee existence of a stable

interaction pa�ern for any arbitrary hedonic utility pro�le. �us, the institutional roles in

a hunter-gatherer society provide a framework that promotes stability (�eorem 3.6).

�is example also illustrates that the introduction of hierarchical leadership and evolv-

ing to a more advanced institutional framework can lead to inherent and persistent in-

stability vis-à-vis this basic bilateral activity pa�ern. Next we see that such leadership,

however, facilitates stability when more complex forms of interaction are established.
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1.2 Multilateral interaction

We consider multilateral interactions that require the active involvement of a middleman,

who brings together a group of economic agents that forms a local community. �e middle-

man may be seen as intermediating, coordinating, or managing the economic interaction

between at least two other agents.

It is important to note that which agent assumes the role of middleman is endogenous

in our framework. Similarly to the bilateral case, discussed above, in this multilateral net-

work economy, a middleman can only engage with other agents if there exist potential

relationships between them. Furthermore, we assume that the economic values generated

in these multilateral exchanges are again expressed as hedonic utilities.

We thus arrive at a network economy in which economic agents can engage into three

forms of economic activities: Autarkic self-provision; bilateral interaction; and multilateral

communal interaction through the facilitation of a middleman. Each of these three forms

of interactions generates di�erent hedonic utility levels to its participants.

�e necessity of hierarchical leadership. We claim that in a hunter-gatherer econ-

omy, we can still guarantee stability through the introduction of a chie�ain. Taking account

of multilateral interactions, we again consider network structure B in Figure 2.

Following the de�nition sketched above, we introduce a multilateral interaction as any
star-structured subnetwork of the depicted network in Figure 2. �us, hunter a can act as

a middleman for gatherer b and chie�ain c, while chie�ain c could principally be a mid-

dleman to all other agents. �us, all middleman positions are independent of the assigned

socio-economic roles of hunter, gatherer and chie�ain.

To keep the discussion here more transparent, we assume that there are no externali-
ties6

: Every middleman’s hedonic utility in a multilateral interaction is de�ned as the sum

of the utilities generated in all bilateral interactions in which she engages, while other

members only receive the hedonic payo� from interaction with the middleman. �us, us-

ing the hedonic utilities from Table 2, if b is the middleman between a and c—represented

as bac—she receives ub (bac) = ub (ab) + ub (bc) = 3. Agents a and c obtain the hedonic

utility from the bilateral interaction with the middleman b: ua (bac) = ua (ab) = 2.

We devise a stability concept in which each agent participates in exactly one activity,

being autarky; a bilateral household; or a multilateral communal interaction. In equilib-

rium, no agent has an incentive to join any other potentially formable activity. Such an

equilibrium is called a stable multilateral outcome.
In network structure B with hedonic utility values represented in Table 2, represent-

ing a hunter-gatherer society with a chie�ain, there now exists a stable multilateral out-

come, namely the all-inclusive collaboration {cabde} centred on the chie�ain c acting as

6
Later in our formal analysis we study explicitly two forms of externalities: link-based and size-based.
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the global middleman. Here, uc (cabde) = 6, ua (cabde) = ud (cabde) = 1 and ub (cabde) =
ue (cabde) = 2. Now, hunter a would rather engage with gatherer b, but b would not agree

due to the lowering of her payo�. �us, the introduction of leadership in a hunter-gatherer

society promotes multilateral stability. �is is asserted in general in �eorem 5.7.

On the other hand, in network structure A representing a leaderless hunter-gatherer

society, there is no such stable multilateral outcome. For the utility values in Table 1, take

{ab,ecd}, then agents a and b obtain ua (ab) = 2 and ub (ab) = 1, respectively. On the other

hand, agent e as a middleman receivesue (ecd) = 2, while (regular) members c and d receive

uc (ecd) = ud (ecd) = 2. Now, agents a and e can mutually improve their positions and agent

b will not su�er a loss from engagement in abe, where a acts as its middleman. Indeed,

ua (abe) = 3 > 2 = ua (ab), ue (abe) = 3 > 2 = ue (ecd) and ub (abe) = ub (ab) = 1. Similarly,

one can show that all other multilateral interaction pa�erns are unstable. �is shows that

an institutional rule such as the binary role pa�ern that guarantees stability in the context

of bilateral activities no longer promotes stability when multilateral interactions are the

form of established outcome.

It is clear from the discussion above that, as in the bilateral case, multilateral stability

is directly emanating from institutional rules determining the nature of potential relation-

ships among economic agents. Our main Equivalence �eorem 4.8 determines technical

conditions for multilateral stability. �eorems 5.3, 5.5 and 5.7 show that certain institu-

tional arrangements such as the imposition of social hierarchy and leadership result in

network structures satisfying the technical conditions for the emergence of stability.

In its full development, we consider di�erent forms of stability that implement certain

features of multilateral interaction and collaboration. Formally, we distinguish “open” from

“closed” multilateral platforms: In the la�er a middleman fully controls the admi�ance of

agents, while in the former this control is limited.

�e remainder of this paper is organised as follows. Section 2 introduces our insti-

tutional approach to economic interaction. Sections 3 and 4 derive technical results related

to the stability in bilateral and network economies, respectively, allowing certain types of

externalities. In Section 5 we draw parallels between our technical results and sustainable

institutional rules. In particular we show how leadership and social hierarchies function

as institutional stabilisers. Proofs of the main theorems are collected in three appendices.

2 Networks and institutions

In this section we introduce some fundamental concepts from social network analysis
7

allowing us to develop key concepts in our institutional approach to describing networked

7
For a comprehensive overview of concepts from network analysis and network formation theories, we

refer to Jackson and Wolinsky (1996), Jackson (2003), Jackson (2008) and Newman (2010).
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economic activities.

Our main postulate is that all economic interaction is principally relational and occurs

in a network that is based on certain institutional principles. Now, an economic activity is

abstractly de�ned as any interaction between linked agents that generates a hedonic utility

value for each of its participants. We emphasise that from this perspective the economy

solely consists of relational activities that are constrained by the imposed institutional rules

guiding economic interaction. For example, in a hunter-gatherer economy only households

as bilateral interactions between hunters and gatherers are considered, based on the social

institution of a primitive social division of labour.

�roughout we work with a �nite set of economic agents denoted by N = {1, ...,n}

where n > 3. �ese economic agents can engage in three di�erent relational economic

activities that generate individual economic values to the participants.

Autarkic activities. �e �rst and most primitive form of economic activity is that of

economic autarky of an economic agent i ∈ N , denoted by ii , in which agent i engages in

home production only. �us, we arrive at the class of all autarkic activities Ω = {ii | i ∈ N }.
�e hedonic utility levelui (ii ) of an agent i ∈ N in autarky ii is interpreted as the generated

subsistence level for that agent.

Bilateral interactions. A second type of economic activity is that of a bilateral inter-
action in the sense that two agents i and j engage into some bilateral activity such as

householding, commodity exchange or service provision for monetary compensation that

generates hedonic utility values for both of these agents.

Formally, for any pair of agents i, j ∈ N with i , j the mathematical expression ij = {i, j}

represents a bilateral economic activity involving agents i and j.8 Assuming institutional

restrictions on bilateral interaction formation, the network structure Γ represents the in-

stitutionally feasible bilateral interactions between agents in N , where

Γ ⊆ ΓN = {ij | i, j ∈ N and i , j}. (1)

�roughout we assume that for every agent i ∈ N there is some j , i with ij ∈ Γ.

In terms of our framework one can think of the pair (Ω,Γ ) as the institutional matrix

in which all economic activities emerge. Autarkic and bilateral activities form the simple
interaction structure ∆m = Ω ∪ Γ. For any sub-structure H ⊆ ∆m = Ω ∪ Γ we denote

N (H ) = {i ∈ N | �ere is some j , i such that ij ∈ H } (2)

as the set of economic agents that are bilaterally engaged within the sub-structure H . It

8
We remark here that ij = ji . Note that if i = j, the relational activity ii represents again the economic

autarky of agent i .
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is easy to see that N (H ) = N (H \ Ω). Also, for every H ⊆ Γ, if H , ∅, then N (H ) , ∅.

Finally, due to the assumptions made, it holds that N (∆m ) = N (Γ ) = N .

We de�ne a path between any two distinct agents i ∈ N and j ∈ N in H ⊆ Γ as

a sequence of distinct agents Pij (H ) = (i1,i2, . . . ,im ) with i1 = i , im = j, ik ∈ N and

ikik+1 ∈ H for all k ∈ {1, . . . ,m − 1}. We de�ne a cycle in H to be a path of an agent from

herself to herself which contains at least two other distinct agents, i.e., a cycle in H from

i to herself is a path C = (i1,i2, . . . ,im ) with m > 4, i1 = im = i , ik ∈ N distinct for all

k = 1, . . . ,m − 1, and ikik+1 ∈ H for all k ∈ {1, . . . ,m − 1}. �e length of the cycle C is

denoted by `(C ) =m − 1 > 3. A sub-structure H ⊆ Γ is called acyclic if H does not contain

any cycles.

Agent i’s neighbourhood in sub-structure H is de�ned as Ni (H ) = {j ∈ N | ij ∈ H }.

Note here that if i ∈ Ni (H ), then ii ∈ H . Also, by the de�nition of the bilateral interaction

structure Γ, it holds that Ni (Γ ) , ∅ for any i ∈ N . We can also express the neighbourhood

of an agent within an arbitrary structure H ⊆ ∆m
in terms of its link based analogue, i.e.,

Li (H ) = {ij ∈ H | j ∈ Ni (H )} ⊆ H . �erefore, Li (∆
m ) = {ii} ∪ Li (Γ ) is the set of feasible

simple activities that i can potentially participate in.

Multilateral interactions. Extending the se�ing of a simple interaction structure (Ω,Γ )

we introduce a third form of relational economic activity, that of a multilateral interaction.

Such complex activities are assumed to be centred around a “middleman”, representing an

agent who acts as a hub in the network structure of this activity. In particular, a middleman

brings together a number of economic agents with whom she already has an established

bilateral relationship. �is is formalised as follows:

De�nition 2.1 Let Γ ⊆ ΓN be a network structure on N .
Amultilateral interaction in Γ is a sub-structureG ⊆ Γ such that |N (G ) | > 3 and there is a
unique agent i ∈ N (G ) such thatNi (G ) = N (G )\{i} and that for all other agents j ∈ N (G )\{i}

it holds that Nj (G ) = {i}. �e agent i is called themiddleman of the multilateral interaction
G, denoted by K (G ) ∈ N (G ).

�us, a multilateral interaction has at least three members that form an explicit star struc-

ture in Γ. Hence, a multilateral interaction has a relational centre, the middleman, binding

and coordinating all constituting bilateral relations in this activity. �roughout, we use

the convention that the middleman is listed �rst and, so, a multilateral interaction G is

described by ij1 · · · jm, where i = K (G ) and Ni (G ) = {j1, . . . , jm}.

A multilateral interaction might also be interpreted as a mathematical expression of

a multi-sided interaction platform provided by its middleman in the sense of Hagiu and

Wright (2011).
9

However, our abstract concepts also includes interpretations of multilateral

9
Hagiu and Wright (2011, page 7) de�ne a multi-sided platform as “an organization that creates value

primarily by enabling direct interactions between two (or more) distinct types of a�liated customers”.
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interactions as clubs (Buchanan, 1965) or local authorities (Tiebout, 1956).

Using this de�nition, we introduce some auxiliary concepts and notation.

De�nition 2.2 Let Γ ⊆ ΓN be some network structure. �e collection of all multilateral
interactions in Γ is called themultilateral extension of Γ given by

Σ(Γ ) = {G | G ⊆ Γ is a multilateral interaction in Γ } (3)

�e triple (Ω,Γ,Σ(Γ )) is referred to as a feasible activity structure on N consisting of all
autarkies G1 ∈ Ω, all feasible bilateral interactions G2 ∈ Γ, and all multilateral interactions
G3 ∈ Σ(Γ ). Finally, we let ∆ = Ω ∪ Γ ∪ Σ(Γ ).

We emphasise that every multilateral interaction in Σ(Γ ) is institutionally feasible in Γ and,

as such, the feasible activity structure (Ω,Γ,Σ(Γ )) is a mathematical representation of all

institutionally feasible interactions in the economy. �is structure acts as a representation

of the institutional rules that govern the interaction in the economy as a whole.

Finally, we remark that we can now introduce the set of middlemen in Γ as the collective

of middlemen of all multilateral activities in Σ(Γ ):

K (Γ ) = {i ∈ N | i = K (G ) for some G ∈ Σ(Γ )}. (4)

It is clear that agents inK (Γ ) ⊂ N play a crucial role in the formation of interaction struc-

tures in the economy. �ese agents represent therefore a class of potential entrepreneurs
in the economy.

Institutions and activity structures. We investigate network interaction structures

that emerge from the application of certain institutional rules. Here, an institutional rule
is interpreted as a prescription that describes how a bilateral interaction structure Γ is

constructed. �us, institutions are interpreted as guides in the creation of interaction in-

frastructures. Formally, this can be expressed as follows.

De�nition 2.3 A network structure Γ ⊆ ΓN conforms to institutional rule I if I pre-
scribes exactly how the bilateral interactions ij ∈ Γ between agents i, j ∈ N are formed.

Within a network structure Γ that conforms to an institutional rule I we can now apply

the de�nition of a multilateral interaction to investigate any multi-agent collaboration that

might emerge through the application of the institutional rule I. In this regard the insti-

tutional rule I naturally restricts bilateral as well as multilateral interaction among agents

in the economy.
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3 Stability in bilateral network economies

In this section we discuss stability in an economy with autarkic and bilateral interactions

only, extending the model of a matching economy of Gilles, Lazarova, and Ruys (2007).

�roughout we assume that every individual i ∈ N has complete and transitive pref-

erences over her set of feasible simple activities Li (∆
m ) = {ii} ∪ Li (Γ ) ⊆ ∆m = Ω ∪ Γ

in which she can engage. We represent these preferences by a hedonic utility function
umi : Li (∆

m ) → R. Let um = (um
1
, . . . ,umn ) denote the resulting hedonic utility pro�le.

De�nition 3.1 A bilateral economy is de�ned as a triple Em = (N ,∆m,um ) in whichN is a
�nite set of individuals, ∆m = Ω∪Γ is a simple activity structure on N , andumi : Li (∆

m ) → R,
i ∈ N , is a hedonic utility pro�le on ∆m.

�e main hypothesis in our model is that each individual i ∈ N activates exactly one of her

activities in Li (∆
m ).

De�nition 3.2 An outcome in a bilateral economy Em = (N ,∆m,um ) is a map π : N → ∆m

such that

(i) π (i ) ∈ Li (∆
m ) for all i ∈ N and

(ii) π (i ) = ij implies that π (j ) = ij for all i, j ∈ N with i , j.

We refer to outcomes in a bilateral economy as bilateral outcomes. A bilateral outcome π

can equivalently be represented by the induced sub-structure in ∆m

π (N ) = {π (i ) | i ∈ N }. (5)

�e set of all bilateral outcomes π in Em is denoted by Πm
. We remark that by the imposed

hypotheses and de�nitions, Πm , ∅. In particular, Ω ∈ Πm
and, according to the assump-

tions made on Γ, for any agent i ∈ N , there exist some π ∈ Πm
with π (i ) = ij for every

ij ∈ Γ.

With slight abuse of notation, we use umi (π ) to denote the hedonic utility that agent

i ∈ N receives under outcome π ∈ Πm
, i.e., umi (π ) = u

m
i (π (i )).

We apply the standard assumptions of individual rationality (IR) and a no-blocking

condition from matching theory (Roth and Sotomayor, 1990)—also known as “pairwise

stability” (PS) (Jackson and Wolinsky, 1996)—to de�ne a notion of stability in bilateral

economies.

De�nition 3.3 An outcome π ∈ Πm is stable in the bilateral exchange economy Em =
(N ,∆m,um ) if all bilateral interactions in π satisfy the following properties:

IR: umi (π ) > u
m
i (ii ) for all i ∈ N , and;
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PS: �ere is no blocking bilateral interaction with regard to π , in the sense that for all i, j ∈ N
with i , j, ij ∈ Γ and π (i ) , ij it holds that

umi (ij ) > umi (π ) implies that umj (ij ) 6 u
m
j (π ). (6)

For an economy to have persistent access to gains from organisation, its social structure

has to universally admit stable outcomes. Hence, regardless what productive abilities and

consumption preferences the individual economic agents hold—both represented here by

their (hedonic) utility functions—a stable outcome has to exist in the corresponding bilat-

eral economy.

De�nition 3.4 A network structure Γ on N supports universal bilateral stability if for
every hedonic utility pro�leum on ∆m = Ω∪Γ there exists at least one stable bilateral outcome
in the bilateral exchange economy Em = (N ,∆m,um ).
An institutional rule I is bilaterally stable if all of the network structures Γ conforming to
I support universal bilateral stability.

Clearly, a network structure that supports universal bilateral stability implies that the econ-

omy supports stability regardless of the exact wealth pa�erns generated. In this regard,

such a network structure re�ects institutional features which promote and enhance the

emergence of stable pa�erns of economic activities.

�e next result identi�es the necessary and su�cient conditions on Γ for universal

bilateral stability. Similar conditions have already been established in the literature on

matching markets (Sotomayor, 1996; Chung, 2000; Jackson and Wa�s, 2008).

Equivalence �eorem 3.5 Anetwork structure Γ onN supports universal bilateral stability
if and only if Γ is bipartite in the sense that there is a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { ij | i ∈ N1 and j ∈ N2 } . (7)

For a proof of this result we refer to Appendix A of the paper.

�eorem 3.5 has a clear interpretation that, without proof, is expressed formally in the

following assertion.

�eorem 3.6 Let IB be the institutional rule that there exist two socio-economic roles R1 and
R2 such that any relation ij ∈ Γ is feasible if and only if i has role R1 and j has role R2. �en
IB is bilaterally stable.

In particular, �eorem 3.6 implies that an institutional social division of labour based on a

dichotomy of hunters and gatherers guarantees universal stability.
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4 Stability in multilateral network economies

Next we extend the scope of our analysis to include multilateral interactions. Let ∆ =

Ω ∪ Γ ∪ Σ(Γ ) be a feasible activity structure on the population N . For i ∈ N we introduce

the set of all feasible activities in which agent i can participate as

Ai (∆) = {ii} ∪ {ij | ij ∈ Γ} ∪ {G | G ∈ Σ(Γ ) and i ∈ N (G ) }. (8)

Also, we let A (∆) = ∪i∈NAi (∆).

For any economic agent i ∈ N , her preferences are again represented as a hedonic util-

ity function ui : Ai (∆) → R. Now u = (u1, . . . ,un ) is a pro�le of hedonic utility functions

for all agents in N .

De�nition 4.1 A hedonic utility function ui : Ai (∆) → R for agent i ∈ N is regular if for
all agents i, j,k ∈ N such that ij,ik ∈ Γ and ijk ∈ Σ(Γ ), ui (ij ) > ui (ii ) and ui (ik ) > ui (ii )

imply that ui (ijk ) > ui (ii ).
We denote byU the class of all regular hedonic utility pro�les on ∆.

Regularity of the hedonic utility functions requires that if a multilateral interaction is com-

posed of individually rational bilateral interactions only, then this multilateral interaction

has to be individually rational as well. �is seems a rather mild and natural hypothesis.

Now a network economy is de�ned as a structure ∆ of feasible activities—autarky, bi-

lateral, as well as multilateral—and a regular hedonic utility function pro�le:

De�nition 4.2 A network economy is a triple E = (N ,∆,u) in which N is a �nite set of
economic agents, ∆ = Ω ∪ Γ ∪ Σ(Γ ) is a feasible activity structure, and u ∈ U is a pro�le of
regular hedonic utility functions ui : Ai (∆) → R, i ∈ N .

As before, we assume that agents participate in exactly one activity.

De�nition 4.3 A multilateral outcome in E = (N ,∆,u) is a map λ : N → ∆ such that
λ(i ) ∈ Ai (∆) and λ(i ) = G ∈ Γ ∪ Σ(Γ ) implies that λ(j ) = G for all j ∈ N (G ).

A multilateral outcome λ now generates a corresponding partitioning of N given by Λ =

(G1, . . . ,Gm ) ≡ λ(N ) ⊆ ∆.

A multilateral outcome is now stable if it satis�es certain standard stability conditions

from matching theory (Roth and Sotomayor, 1990), network formation theory (Jackson and

Wolinsky, 1996), and Tiebout equilibrium theory for club economies (Gilles and Scotchmer,

1997). Here, we introduce two notions of stability re�ecting two forms of assumed control

of middlemen over the membership of the provided multilateral interactions.

De�nition 4.4 Let E = (N ,∆,u) be a network economy.
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(a) A multilateral outcome λ? : N → A (∆) generating Λ? = (G?
1
, . . . ,G?m ) is stable in E

if for every p ∈ {1, . . . ,m} the activity G?p ∈ Λ
? satis�es the individual rationality IR

and two pairwise stability conditions PS and PS* as speci�ed below:

IR For all i ∈ N (G?p ) it holds that ui (G
?
p ) > ui (ii );

PS For all distinct agents i ∈ N (G?p ) and j ∈ N (G?q ) with q ∈ {1, . . . ,m} and ij ∈ Γ,
ij < G?p ∩G

?
q :

ui (ij ) > ui (G
?
p ) implies uj (ij ) 6 uj (G

?
q ); (9)

PS* For all distinct agents i ∈ N (G?p ) and j ∈ N (G?q ) with q ∈ {1, . . . ,m} with
ij ∈ Γ, ij < G?p ∩G

?
q and either j = K (G?q ) or G

?
q ∈ Γ:

ui (G
?
q ∪ {ij}) > ui (G

?
p ) implies uj (G

?
q ∪ {ij}) 6 uj (G

?
q ). (10)

(b) A multilateral outcome λ? : N → A (∆) generating Λ? = (G?
1
, . . . ,G?m ) is strongly

stable in E if λ? is stable—satisfying IR, PS and PS*—in E and, additionally, for every
p ∈ {1, . . . ,m} the activity G?p ∈ Λ

? satis�es Reduction Proofness [RP]:

RP If G?p is a multilateral interaction, i.e., G?p ∈ Σ(Γ ) ∩ Λ?, it holds that for every
sub-structure G ⊆ G?p

ui (G ) 6 ui (G
?
p ) (11)

where i = K (G?p ) = K (G ) is the middleman of both G?p and G.

Condition IR is a standard individual rationality condition that allows an individual to opt

out of an economic activity if she is be�er o� in autarky. Condition PS is similar to the

condition for bilateral economies in De�nition 3.3: It rules out blocking opportunities for

pairs of agents who are not connected to each other in the present equilibrium.

Condition PS* rules out blocking opportunities for pairs of agents, at least one of whom

can add a link without severing any of her existing links in the present equilibrium. Hence,

such an agent is either a middleman or involved in a bilateral interaction. �is condition

requires that there are no two distinct agents who want to be linked to each other in a

multilateral interaction in which one of them is a middleman.
10

Both PS and PS* are concerned with the formation of new links by deviating agents.

�ese conditions do not allow a middleman to block access to the multilateral interaction:

Stability is founded on openness of such multilateral interactions in the sense that new

10
Note that both middlemen and agents linked in a bilateral interaction, have multiple types of blocking

opportunities: such agents can add a link with or without severing their current links. Such agents are subject

to both (no blocking) conditions PS and PS*.

15



members can join the interaction if that is to their bene�t. �ere are numerous economic

activities and platforms that satisfy the principle of openness such as trading posts (stores),

markets, open source communities, and many economic service provision cooperatives

(clubs). In most of these cases, if entrants follow the house rules of the platform in question,

they will not be excluded from participation.

�e notion of strong stability is more demanding in the sense that Condition RP explic-

itly “closes” a multilateral interaction: �e middleman can exclude any participant from

the platform. In particular, RP states that agents are refused membership if that bene�ts

the middleman. In practice, closed platforms include team production situations, exclu-

sive clubs (guilds and unions), and particular supply chains in which an intermediary may

discontinue a procurement relation with a primary input supplier.

Under (regular) stability, a middleman is merely a coordinator of the multilateral in-

teraction that is fully open to participation. On the other hand, under strong stability a

middleman has to be viewed as a manager of the activity under consideration, since she

controls agents’ access. We emphasise that strong stability implies stability, i.e., manage-

ment implies coordination, but that the reverse is not true.

Within the context of network economies we address the existence of stable multilat-

eral outcomes for a class of hedonic utility pro�les. Formally, we introduce:

De�nition 4.5 Let Γ be a network structure and letU? ⊆ U be some given class of regular
utility pro�les on Γ.

(a) A network structure Γ supports universal (strong) multilateral stability on the
classU? if for every utility pro�leu ∈ U? there exists a (strongly) stable multilateral
outcome λ? in the network economy E = (N ,∆,u), where ∆ is generated by Γ.

(b) An institutional rule I is (strongly) stable on the classU? if every network structure
Γ conforming to I supports universal (strong) multilateral stability onU?.

Next we discuss analytical results for di�erent classes of hedonic utility functions, partic-

ularly based on di�erent forms of network externalities. �e term “network externality”

is used here to capture the dependence of one agent’s utility on another agent’s decision

to link with a third one. Clearly, externalities can take many di�erent forms. �erefore,

any insights are based on certain assumptions on the nature of these externalities. Here

we discuss two broad categories: link-based externalities and size-based externalities.

�e most basic form of network externality is actually the complete absence of any

external e�ect. �is is formalised as follows.

De�nition 4.6 Let E = (N ,∆,u) be a network economy and let i ∈ N . �en i’s hedonic
utility function ui : Ai (∆) → R exhibits no externalities if for all multilateral interactions
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G ∈ Ai (∆) ∩ Σ(Γ ) it holds that

ui (G ) = ui (iK (G )) if i , K (G )

ui (G ) >
∑

j∈N (G )\{i} ui (ij ) if i = K (G )
(12)

�e class of utility pro�les consisting of regular utility functions exhibiting no externalities is
now denoted byUN ⊂ U .

Stability properties in the case of no externalities are discussed below in combination with

the case of link-based externalities.

4.1 Link-based externalities

A simple form of network externality is derived from the connections model developed

in Jackson and Wolinsky (1996). Here we adapt this model to �t our se�ing. Suppose

that two agents i, j ∈ N are in a feasible value-generating relationship ij ∈ Γ. Now, in

a network economy this value-generating interaction can be executed either directly as

bilateral interaction ij or through the intermediation of a middlemanK (G ) in a multilateral

interaction G with i, j ∈ N (G ). If the second form of interaction occurs, the generated

bene�ts are discounted by a loss due to intermediation by middleman K (G ).

De�nition 4.7 Let E = (N ,∆,u) be a network economy and let i ∈ N . �en i’s hedonic
utility function ui : Ai (∆) → R exhibits link-based externalities if there is some discount
factor 0 < δ < 1 with for all multilateral interactions G ∈ Ai (∆) ∩ Σ(Γ ) :

ui (G ) = ui (iK (G )) +
∑

j∈N (G )∩Ni (Γ ) δ · ui (ij ) if i , K (G )

ui (G ) >
∑

j∈N (G )\{i} ui (ij ) if i = K (G )
(13)

�e class of utility pro�les consisting of regular utility functions exhibiting link-based exter-
nalities is denoted byUL ⊂ U .

Note that the case when the utility function exhibits no externalities is equivalent to the

link-based externality formulation for discount factor δ = 0.

We now address the existence of (strongly) stable multilateral outcomes for arbitrary

utility pro�les exhibiting no or link-based externalities. Our investigation of the necessary

and su�cient conditions for the support of universal stability results into the identi�cation

of a relatively large class of network structures.

Equivalence �eorem 4.8

(i) �e network structure Γ supports universal multilateral stability on the class UN

of hedonic utility pro�les exhibiting no externalities if and only if Γ satis�es the
property that for every cycle C ⊆ Γ : `(C ) = 3k , where k ∈ N is some integer.
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(ii) �e network structure Γ supports universal multilateral stability on the class UL of
hedonic utility pro�les exhibiting link-based externalities if and only if Γ satis�es
the property that for every cycle C ⊆ Γ : `(C ) = 3k , where k ∈ N is some integer
such that k > 2.

(iii) �e network structure Γ supports universal strong multilateral stability on the class
UL ∪ UN of hedonic utility pro�les exhibiting no or link-based externalities if and
only if Γ satis�es the property that for every cycleC ⊆ Γ : `(C ) = 6s , where s ∈ N is
some integer.

A proof of �eorem 4.8 is relegated to Appendix B.

�e assertions stated in �eorem 4.8 above imply that only in the absence of cycles of

certain speci�ed lengths in the network structure Γ there emerges universal stability. If

there are link-based externalities, this includes triads. But if there are no externalities this

condition is considerably weaker, allowing triads to be present in the network structure of

the economy.

�eorem 4.8(iii) imposes a rather strong condition on the network structure in the econ-

omy. Importantly these conditions are the same for an economy without externalities as

for economies with link-based externalities. Indeed, any cycle of length other than a 6-

fold is excluded. In particular, there are no triads of length 3 present in the network, thus

implying that the network only consists of weak ties in the sense of Granove�er (1973).

4.2 Size-based externalities

Next we consider a wider class of externalities based on the size of the multilateral interac-

tion considered. Such externalities can be positive (“synergistic”) or negative (“crowding”).

In the literature on Tiebout and club economies such crowding externalities have already

been investigated extensively (Conley and Wooders, 1997; Conley and Konishi, 2002).

For utility pro�les with size-based externalities, the number of agents in a multilat-

eral interaction determines the intensity of the externality. �e identity of the middleman

determines whether this externality is synergistic or crowding as well as its magnitude.

De�nition 4.9 Let E = (N ,∆,u) be a network economy. �e hedonic utility function ui of
i ∈ N exhibits size-based externalities if for every multilateral interaction G ∈ Σ(Γ ) :

ui (G ) =
∑

j∈Ni (G )

ui (ij ) + αc · [ #N (G ) − 2 ] (14)

for all i ∈ N (G ), where c = K (G ) is G’s middleman and αc ∈ R is a middleman-speci�c
synergy parameter.
�e class of regular hedonic utility pro�lesu that exhibit side-based externalities is denoted by
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US ⊂ U . �e subclass of utility pro�les that exhibit synergistic externalities with αc > 0

for all middlemen c ∈ K (Γ ) is denoted by U+S ⊂ US and the subclass of utility pro�les
that exhibit crowding externalities with αc < 0 for all middlemen c ∈ K (Γ ) is denoted by
U−S ⊂ US .

First we report that there exist network economies exhibiting size-based externalities in

which there is no stable multilateral outcome. An example is presented below.

Example 4.10 Let N = {1,2,3,4} and Γ = {12,23,34} be the line network. Let α2 = 200

and α3 = −50. Let the hedonic utility pro�le be such thatu1(12) = u2(22) = u3(33) = −100,

u1(11) = u2(12) = 0, u2(23) = u4(34) = 100, u4(44) = 90, u3(23) = 60, and u3(34) =

300. Using the linear size-based externality formulation (14), we can compute the utility

levels in the two possible multilateral interactions 213 and 324 in a straightforward manner:

u1(213) = 100, u2(213) = 300, u3(213) = 260, u2(324) = u4(324) = 50, and u3(324) = 310.

We now claim that in this example there is no stable outcome. First, consider the outcome

(12,34). It is not stable since Condition PS* is not satis�ed: 50 = u2(324) > u2(12) = 0 and

310 = u3(324) > u3(34) = 300. Also, since −100 = u2(22) < u2(324) = 50, Condition PS* is

not satis�ed for the outcome (11,22,34). Next, (11,324) is not stable since IR for agent 4 is

not satis�ed: 50 = u4(324) < u4(44) = 90. Moving on, the outcome (11,23,44) is not stable

due to a violation of PS*: 0 = u1(11) < u1(213) = 100 and 100 = u2(23) < u2(213) = 300.

Finally, (213,44) is not stable due to a violation of PS: 260 = u3(213) < u3(34) = 300

and 90 = u4(44) < u4(34) = 100. Using the same reasoning, we �nd that (12,33,44) and

(11,22,33,44) are not stable either. �

Second, stability may not be possible if we impose crowding externalities on all multilateral

interactions. �e following example illustrates this.

Example 4.11 Let N = {1,2,3} and let Γ = {12,23}. Now assume α2 = −2. Let the utility

pro�le be such that ui (ii ) = 0 for all i = 1,2,3 and u1(12) = u2(12) = 3, u2(23) = 4, and

u3(23) = 1. Using the linear size-based externality formulation (14), we compute the utility

levels for 213 in a straightforward manner: u1(213) = 1, u3(213) = −1, and u2(213) = 5.

We now claim that there is no stable multilateral outcome in this network economy.

To show this, �rst, consider (12,33). �is outcome is not stable due to a violation of PS:

3 = u2(12) < u2(23) = 4 and 0 = u3(33) < u3(23) = 1. Similarly, (11,22,33) is not

stable. Next, (11,23) is not stable due to a violation of PS*: 0 = u1(11) < u1(213) = 1 and

4 = u2(23) < u2(213) = 5. Finally, (213) is not stable due to a violation of IR for agent 3:

−1 = u3(213) < u3(33) = 0. �

Finally, we consider a 5-agent circular network structure. Here, the size-based externalities

are assumed to be synergistic. However, the emergence of a Condorcet-like cycle in the

economy prevents the emergence of the desired stability.
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Example 4.12 Let N = {1,2,3,4,5} and let Γ = {12,15,23,34,45}. Furthermore, let αc =

α = 2 for all potential middlemen c ∈ K (Γ ) = N . Let the utility levels for each simple

activity be given by ui (ii ) = 0 for all i ∈ N , u1(12) = u2(23) = u3(34) = u4(45) = 2,

u1(15) = u2(12) = u3(23) = u4(34) = u5(45) = 10 and u5(15) = −1. �e utility levels in

all possible multilateral interactions are computed in a straightforward manner from the

linear size-based externality formulation: u5(125) = 1, u1(213) = u2(324) = u3(435) =

u4(514) = 4, u5(514) = 11, u1(514) = u2(125) = u3(213) = u4(324) = u5(435) = 12, and

u1(125) = u2(213) = u3(324) = u4(435) = 14. One can easily check that also in this example

there is no stable multilateral outcome. �

We conclude from these examples that the emergence of a stable multilateral outcomes is

prevented if (1) there are crowding externalities for all or some multilateral interactions,

or (2) there are cycles in Γ. However, if these conditions are ruled out, stability can be

established.

�eorem 4.13 If Γ is an acyclic network structure, then Γ supports universal multilateral
stability on the classU+S .

A proof of this existence result can be found in Appendix C.

�e impossibility of strong universal stability. �eorem 4.13 cannot be strengthened

to the case of strong stability. �e next example devises a simple case satisfying the condi-

tions of �eorem 4.13 in which no strongly stable multilateral outcome can be constructed.

�us, in the presence of these externalities only economies with “open” multilateral eco-

nomic activities can achieve stability.

Example 4.14 Let N = {1,2,3} with Γ = {12,23} and Σ(Γ ) = {213}. We consider the

hedonic utility pro�le with size-based externalities generated by α2 = 2 and u1(11) =

u3(33) = 0, u2(22) = −4, u1(12) = −1, u2(23) = −3, and u2(12) = u3(23) = 1. Hence,

u1(213) = −1 + 2 = 1, u2(213) = 1 − 3 + 2 = 0, and u3(213) = 1 + 2 = 3.

We now check that in this economy there is no strongly stable multilateral outcome:

{11,23} is not stable since agent 1 wants to join agent 2 in the multilateral interaction

213 and its middleman, agent 2, agrees; {12,33} is not stable since IR is not satis�ed for

agent 1; {213} is not strongly stable since its middleman, agent 2, prefers 12 over 213 and

thus severs the participation of agent 3; and {11,22,33} is not stable since agents 2 and 3

prefer the bilateral interaction 23 over being autarkic.

Although there is no strongly stable multilateral outcome in this network economy, the

multilateral interaction {213} forms a stable one. �
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5 �e stability of institutional arrangements

�e discussion so far derives the analytical conditions for a network structure Γ to support

various forms of universal stability. �ese conditions are stated in Equivalence �eorems

3.5, 4.8 and �eorem 4.13. �eorem 3.6 already clari�ed the case of bilateral institutional

stability. Here we debate the institutions that impose stability through the network struc-

tures that conform to these institutional rules. In particular, we focus on three institutional

arrangements or frameworks, namely that of a strict social hierarchy, a tiered leadership

organisation and a (global) market place.

Strict social hierarchies. One particular class of social institutional arrangements that

implies the satisfaction of the conditions of Equivalence �eorem 4.8 as well as �eorem

4.13 is that of a strict social hierarchy.

De�nition 5.1 A strict social hierarchy is an institutional ruleISH such that there is some
partitioningT = {T1, . . . ,TK } ofN withTk∩Tk ′ = ∅ for allk , k′ and∪T = N incorporating
the following network structure rules:

(i) Let i ∈ Tk for some k > 2, then (1) i has a feasible relationship ij with exactly one
agent j ∈ Tk−1, (2) i can have any number of feasible relationships with agents in
Tk+1 and (3) i has no other relationships.

(ii) Let i ∈ T1, then (1) i can have any number of feasible relationships with agents inT2

and (2) i has no other relationships.

�e classes in T can be interpreted as social classes, where T1 is the highest (“royal”) class

and TK is the lowest (“serf”) class. Every agent now has exactly one superior and any

number of subordinates in the next class. �ere are no relationships that cross multiple

tiers or classes.

A special case of a strict social hierarchy is a global market place in which there is one

global market makerm ∈ N who is interacting with all other agents i ∈ N \ {m}. Hence, a

global market place is a strict social hierarchy with two classesT1 = {m} andT2 = N \ {m}.

One can interpret the market maker m as a global platform provider in which all other

agents participate.

�e following lemma provides the relationship between the strict social hierarchy ISH

rule and the network structures to which it corresponds. �is lemma is stated as �eorem

2.3 in Brink and Gilles (1994). For a proof we refer to that paper.

Lemma 5.2 A network structure Γ on N conforms to the strict social hierarchy ISH if and
only if Γ is acyclic.

With reference to the equivalence theorems stated in Section 4, we can now immediately

conclude the following assertion regarding strict social hierarchies.
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�eorem 5.3 �e institution of the strict social hierarchy ISH is strongly stable onUN ∪UL

and stable onU+S .

Piccione and Rubinstein (2007) show that a strict social hierarchy even guarantees out-

comes that satisfy the �rst and second welfare theorems. �is conforms with the wide-

ranging stability properties identi�ed in the assertion above.

Tertius gaudens hierarchies. Next we consider an institutional se�ing that weakens

the strict social hierarchy and allows the formation of certain triads in the hierarchy. �is

is based on the application of Burt’s tertius gaudens principle (Burt, 1992): In the presence

of tension between two agents, a third agent can take control over the relational bene�ts

and realise her most preferred outcome. �is is the case when a manager exploits the com-

petition of two subordinates for a promotion or when a broker bene�ts from the tension

between a buyer and a seller by extracting all gains from trade.

�e institutional rule re�ecting this tertius gaudens principle can be introduced formally

through a modi�cation of ISH .

De�nition 5.4 A Tertius Gaudens hierarchy is an institutional rule ITH such that there
is some partitioning T = {T1, . . . ,TK } of N with Tk ∩ Tk ′ = ∅ for all k , k′ and ∪T = N

incorporating the following network formation rules:

(i) Let i ∈ Tk with k > 2, then (1) i is linked with exactly one agent from the preceding
hierarchical levelTk−1 and (2) i has no links with agents from higher order levelsTk−s
with s > 2;

(ii) Let i ∈ Tk , then i can have at most one link with an agent j ∈ Tk from her own
hierarchical level, and;

(iii) Let i, j ∈ Tk with k > 2 be two linked agents, then there is some agent h ∈ Tk−1 who
is linked to both i and j.

An example of a network structure satisfying ITH is shown on Figure 3 where agents are

mapped into three hierarchical levels—dark grey, light grey, and white. Here, if two agents

of the same hierarchical level are linked together, like, e.g., e and f at the lowest level, they

also share the same “boss” located on the level above.

Here, a link across hierarchical levels represents an authority relation. By interpret-

ing links between agents at the same hierarchical level to represent interaction based on

substitutable skills among colleagues, we identify competitive tension among co-workers.

Indeed, control and tension are the key notions underlying the principle of tertius gaudens:
�e control over lower ranked individuals is reinforced by divergent preferences between

them. �us, a higher ranked individual may induce more e�ort and be�er performance
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Figure 3: A Tertius Gaudens network structure

from her subordinates. In Figure 3 we identify two controlled or managed branches, b–e–f
and c–d–g–h–i, that are based on these principles.

On the one hand, the institutional ruleITH induces limited connectivity across branches.

�is, in turn, facilitates specialisation, provides opportunities for developing originality

and innovation as any branch of the hierarchy can develop an independent mode of gov-

ernance, and stimulates product building or information generation.

On the other hand, as stated, ITH does not completely eliminate redundant links. In

the presence of redundant links, the �ow of information can still reach all agents in the

organisation, even if some links fail. Redundant links may also provide higher speed of

transmission of information along the organisation network and ensure su�cient level of

compatibility across independently developing branches. In the example, one of the links

among {ac,cd,ad } is redundant, but functions as an insurance against the severance of the

other links.

Equivalence �eorem 4.8 and the fact that Tertius Gaudens hierarchies result in net-

works in which all cycles are closed triads leads to the following assertion.

�eorem 5.5 �e Tertius Gaudens hierarchy ITH is stable onUN .

Due to the nature of the networks resulting from ITH this assertion cannot be extended

or strengthened, in particular since Equivalence �eorem 4.8(ii) excludes triads from the

network structure Γ.

Weak global market places. Finally we consider the introduction of market-makers

into bilateral networks as discussed in the example of a hunter-gatherer economy as the

emergence of a chie�ain. A global market-maker is a unique individual economic agent

who is linked directly to multiple other members in the population.

De�nition 5.6 A weak global market place is an institutional rule IW such that there
exists a mapping r : N → {A,B,M }, where A, B and M are three distinct socio-economic

23



roles—interpreted as two partner roles (A and B) and a market-maker role (M)—that satis�es
the following rules:

(i) For all agents i, j ∈ N with i , j and r (i ) = r (j ) : ij < Γ;

(ii) �ere is at most one market maker, i.e., #{i ∈ N | r (i ) = M } 6 1, and;

(iii) Each A-agent has at most one link with a B-agent and vice versa.

Obviously a weak global market place is a global market place in which sparse local interac-

tions are maintained. �us, the global market maker M bridges local markets represented

by bilateral interactions between trading partners of type A and B.

An example of a network conform IW is shown in the right panel in Figure 4. �is net-

work structure is based on a construction method using a simple binary network structure

depicted in the le� hand panel to which a unique market maker д is added.

a

b

c

d

e

f

a

b

c

d

e

f

g

Figure 4: Construction of a weak global market place

In the le� hand panel of Figure 4 we depict a network of bilateral exchanges between

two types of agents: dark grey and light grey. �is network is conform IB and represents

a situation of completely localised interaction. Clearly, this network exhibits structural

holes in the sense of Burt (1992).

Next the market-maker д is introduced to create a global market place. �e market-

maker can be viewed as an entrepreneurial agent who exploits the presence of structural

holes and invests in the links that will bridge these holes, thus, increasing opportunities

for mutually bene�cial trade.
11

Applying Equivalence �eorem 4.8 and the fact that a weak global market place gen-

erates closed triads in the resulting network structures, we derive the following assertion.

11
Note that here the market maker д may bene�t from the tension in negotiations between any given pair

of gray agents to extract rent by providing outside opportunities, using the tertius gaudens principle. In the

right-hand panel, each market participant has a choice of engaging directly with her potential partner or

execute her trade through the market maker. It is worth pointing out that in order to ensure the existence of

stability the role of the market maker cannot be contested (Gilles and Diamantaras, 2013).
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�eorem 5.7 �e weak global market place IW is stable onUN .

As before, this assertion cannot be strengthened.

Concluding remarks. What is clear from our analysis is that to render more complex

economic outcomes stable for any distribution of preferences, the underlying network

must satisfy a more complex set of properties. In the case of bilateral interactions, a neces-

sary and su�cient characteristic is summarised in the rule of binary role assignment among

economic agents. Whereas for stability with multilateral interactions, these conditions are

sensitive with respect to the presence and type of externalities within a multilateral in-

teraction and the discretionary power of the middleman to sever just one of her existing

interactions and not any others. Moreover, adopting complex institutional rules – such as

those shown appropriate for the functioning of more complex multilateral interactions –

to govern more basic bilateral interactions may be ine�ective and lead to instability.

Ruys (2015) extends the relational approach developed here to include relational capac-

ities. An enterprise is then de�ned as an operator on a minimal structure of independent

relational capacities. An enterprise’s objective is to enhance its relational capacity. Multi-

lateral interactions in this network structure specify the relational capacities that support

its emergence and functioning as, for example, a “social” enterprise.
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Appendices

A Proof of �eorem 3.5

Here we show the necessary and su�cient conditions for the network structure to support

universally bilateral stability. In Lemma 1, we establish a parallel with existing notions in

the one-to-one matching literature.

Lemma 1 Consider a bilateral economy Em = (N ,∆m,um ). Let the network structure Γ be
bipartite in the sense that there exists a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { ij | i ∈ N1 and j ∈ N2 } .

�en there exists a corresponding marriage problem in the sense of Gale and Shapley (1962)
such that a stable matching in the marriage problem corresponds to a stable bilateral outcome
in the bilateral economy Em.

Proof. A marriage problem as introduced by Gale and Shapley (1962) consists of two �-

nite and disjoint sets of players M andW . Each agent m ∈ M has complete and transitive

preferences, �Mm , over W ∪ {m} and each agent w ∈ W has complete and transitive pref-

erences, �Ww , over M ∪ {w }. A matching is a function µ : M ∪W → M ∪W of order two,

i.e., µ (µ (i )) = i , µ (m) ∈ W ∪ {m} and µ (w ) ∈ M ∪ {w }. A matching µ is stable if there is

no (a) player m ∈ M or w ∈ W who prefers to be matched to herself than to her partner

in µ, or (b) pair of distinct players (m,w ) who are not matched by µ and w �Mm µ (m) and

m �Ww µ (w ). Notice that conditions (a) and (b) correspond to conditions IR and PS of De�-

nition 3.3, respectively.

Consider a bilateral economy Em = (N ,∆m,um ) with a bipartite network structure Γ such

that there exists a partitioning {N1,N2} of N with

Γ ⊆ N1 ⊗ N2 = { ij | i ∈ N1 and j ∈ N2 } .

Let Γ̃ = N1 ⊗ N2 = { ij | i ∈ N1 and j ∈ N2 }. Next consider utility pro�le ũm : Γ̃ ∪ Ω → R
such that for all agents i ∈ N and all matchings ij that satisfy the bipartite property but

are not feasible, i.e., ij ∈ Γ̃ \ Γ, we set ũi
m (ij ) < umi (ii ), and for all matchings ij ∈ ∆m

, we

set ũm = um. Clearly, ũm represents complete and transitive preferences on Γ̃ ∪ Ω.

Let M = N1, W = N2, and let preference pro�les �M and �W be represented by hedonic

utility functions ϕMi : W ∪ {m} → Rwith ϕMi (Ni (ij )) = ũi (ij ) for all i ∈ M and all ij ∈ Γ̃∪Ω

and ϕW
k
(Nk (kl )) = ũk (kl ) for all k ∈ W and all kl ∈ Γ̃ ∪ Ω. �e tuple (M ,W ,�M ,�W )

de�nes a marriage problem.

Suppose µ∗ is a stable matching in the marriage problem (M ,W ,�M ,�W ). Consider, a

bilateral outcome π ∗ in economy E such that Ni (π
∗(i )) = µ∗(i ) for all i ∈ N . Notice

that π ∗ ∈ ∆m
follows from the stability of µ∗, which implies that for all i ∈ M ∪W ,

µ∗(i ) ∈ Ni (∆
m ), otherwise there is a contradiction to the stability of µ∗ as there are two

distinct players k ∈ M and l ∈W with µ∗(k ) = l and kl < Γ such that k and l each prefer

to be matched to themselves than to each other, i.e. k �M
k

l and l �W
l

k given by the

construction of ũ, ϕM , and ϕW .

Lastly, we show that the stability of the matching function µ∗ in the marriage problem

implies the stability of the bilateral outcome π ∗ in the bilateral economy (N ,∆m,um ). �e
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proof follows by contradiction. Suppose the matching µ∗ is stable and the bilateral outcome

π ∗ is not stable. �erefore either IR or PS of De�nition 3.3 must be violated.

Suppose, �rst, that IR does not hold and that there is an agent i ∈ N such that ui (π
∗) <

ui (ii ). By construction, this implies that there is a player i ∈ M12
such that i �Mi µ (i ),

which establishes a contradiction to the stability of µ∗.
Next, suppose that PS does not hold and that there are two distinct agents i ∈ N1 and j ∈ N2

with ij ∈ Γ such that ui (ij ) > ui (π
∗) and uj (ij ) > uj (π

∗). By construction this implies that

there are two distinct agents i ∈ M and j ∈ W with µ∗(i ) , j such that j �Mi µ∗(i ) and

i �Wj µ∗(j ) which contradicts to the stability of µ∗.

Proof of �eorem 3.5

If: Consider a bilateral economy Em = (N ,∆m,um ). Let the network structure Γ be bipartite

in the sense that there exists a partitioning {N1,N2} of N such that

Γ ⊆ N1 ⊗ N2 = { ij | i ∈ N1 and j ∈ N2 } .

For any preference pro�le um, we can obtain a corresponding marriage problem as shown

in Lemma 1. �e existence of a stable matching in any marriage problem is shown by means

of a constructive proof of Gale and Shapley (1962) and by means of a non-constructive proof

in Sotomayor (1996). By analogy, this proves the existence of a stable bilateral outcome in

bilateral economy Em for any preference pro�les um, given network structure Γ.

Only If: We show that if the network structure is not bipartite, there exists a preference

pro�le for which there is no stable bilateral outcome in a bilateral economy.

Consider bilateral economy Em = (N ,∆m,um ) with N = {i, j,k }, and network structure

Γ = {ij,ik, jk }. Consider the following preference pro�le: ui (ij ) = uj (jk ) = uk (ik ) = 2,

ui (ik ) = uj (ij ) = uk (jk ) = 1, andul (ll ) = 0 for all l ∈ {i, j,k }. It is easy to see that there is no

stable bilateral outcome in this economy. For example, consider the outcome π (i ) = π (j ) =
ij and π (k ) = kk . It is not stable because pairwise stability is not satis�ed: uk (jk ) > uk (kk )
and uj (jk ) > uj (ij ). Similarly, one can show that no other bilateral outcome is stable.

�is completes the proof of �eorem 3.5

B Proof of �eorem 4.8

�e following Lemmas state two intermediate results. �roughout we let E = (N ,∆,u) be

some network economy. As before let ∆m = Ω ∪ Γ be a simple interaction structure on N
and let u ∈ U be an arbitrary pro�le of regular utility functions. Also, let

Bi (∆
m,u) =

{
j ∈ N �� ij ∈ ∆m

and ui (ij ) > ui (ik ) for all k ∈ N with ik ∈ ∆m }
(15)

be the set of most preferred partners of agent i for all i ∈ N .

Lemma 2 Let the network structure Γ be acyclic. �en there is a pair of agents i, j ∈ N with
i , j such that j ∈ Bi (∆m,u) and i ∈ Bj (∆

m,u).

12
Here we assume, without loss of generality, that i ∈ M . If we were to assume, instead, that i ∈ W the

argument follows analogously.
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Proof. If there is some agent i ∈ N with i ∈ Bi (∆
m,u) the assertion is obviously valid.

Next assume that for every agent i ∈ N it holds that i < Bi (∆
m,u) and the second part of

the assertion is not true. �en for all agents i, j ∈ N with i , j such that j ∈ Bi (∆
m,u)

it holds that i < Bj (∆
m,u). Consider agent i ∈ N and without loss of generality we may

assume that the set of most preferred agents is a singleton, i.e., Bi (∆
m,u) = {j}. So, it must

hold that j , i . Next, consider the set of most preferred partners of agent j. Without loss of

generality we again may assume that Bj is a singleton, say Bj (∆
m,u) = {k }. It must again

hold that k < {i, j}. Subsequently, consider the set of most preferred partners of agent k .

Without loss of generality we again assume uniqueness, say Bk (∆
m,u) = {l }. It must be that

l < {j,k }, moreover l , i otherwise Γ contains a cycle. Hence, l < {i, j,k }. By continuing

this process in a similar fashion, given that the player set N is �nite, we construct a cycle.

�erefore, we have established a contradiction.

Lemma 3 Let (N ,∆,u) be a network economy and let Γ be an acyclic network structure. �en
all paths between any two agents in N contain the same set of agents.

Proof. �e statement follows immediately from the fact that the network structure Γ
contains no cycles. It is clear that if there were two distinct paths that connect two agents,

these two paths would constitute a cycle.

Next we proof the assertions stated in �eorem 4.8. Notice that the presentation of the

proof is in reversed order. �is is because condition (iii) imposes to the most stringent

requirements on the network structure whereas condition (i) imposes the least stringent.

Proof of �eorem 4.8(iii)

If: Consider a network economy E = (N ,∆,u) such that u ∈ UN ∪UL. We consider two

separate cases: (I) when Γ is acyclic; and (II) when Γ contains a cycle with an even number

of connected agents that is a multiple of 3.

Let S ⊆ N be some subset of economic agents. �en we denote by

Γ(S ) = ∆m ∩ {ij | i, j ∈ S }

the network structure and autarkic positions restricted to the subset S . In addition we use

the operator ⊕ to denote an addition of an interaction to a given (partial) multilateral out-

come, e.g. given the partial multilateral outcome Λ = {{ijk }, {ll }}, Λ ⊕ {ih} = {{ijhk }, {ll }}.
Finally, we slightly abuse notation and given a (partial) multilateral outcome Λ, we denote

by N (Λ) all agents that are part of this outcome, i.e. they are part of an autarky, or bilateral,

or multilateral interaction in Λ. Using these auxiliary notations we proceed with the proof

of the two cases.

Case I: Suppose Γ is acyclic. �us, according to Lemma 3, no agent in a multilateral

interaction gains any utility from having an indirect link via the middleman with a third

agent. �is is because for any two agents in a multilateral interaction, none of whom is a

middleman, the only connecting path between them is via the middleman, and, therefore

their direct link is not an element of the activity structure in this network economy. In this

case the utility function in Equation (13) simpli�es to:

ui (G ) =
∑

j∈Ni (G )

ui (ij ), (16)
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for all i ∈ N and all G ∈ Ai (∆) .

We now devise an algorithm to construct a stable multilateral outcome in the economy E
introduced above. �is construction consists of several steps and collects agents in various

multilateral interactions such that there are no possibilities for pro�table deviations of all

partners involved in the deviation.

We initiate the algorithm by se�ing N the set of agents, Γ1 = ∆m
(the set of links that can

be used in the construction of the outcome), Λ1 = ∅ is a partial multilateral outcome and

K1 = ∅ is the set of agents who are active in outcome Λ and can act as middlemen. We

now proceed by constructing the desired strongly stable multilateral outcome in a step-

wise fashion:

Let N , Γk , ∅, Λk , Kk be given for k . We now proceed by constructing these elements for

step k + 1.

Take two agents i ∈ N and j ∈ N (notice that it is possible for i = j) such that i ∈
Bj (Γk ,u) and j ∈ Bi (Γk ,u). Such two agents exist for any non-empty Γk ⊆ Γ by Lemma 2.

If i = j, then we de�ne

Λk+1 = Λk ∪ {ij}; (17)

Γk+1 = Γk \ Li (∆
m ) ; (18)

Kk+1 = Kk . (19)

�us, in (17), we add the autarky {ii} to the partial outcome Λk . In (18) we update the set

of available interactions in Γk by eliminating all interactions that involve agent i . Last, we

do not update the set of potential middlemen in the outcome Λk+1 as the only new agent

in this outcome, agent i , cannot add another link without exiting the autarkic state.

Subsequently we proceed to step k + 1 in our construction process.

If i , j and i < Kk and j < Kk , then we de�ne

Λk+1 = Λk ∪ {ij}; (20)

Γk+1 = Γk \ Γ (N (Λk+1)) ; (21)

Kk+1 = Kk ∪ {i, j}. (22)

�us, in (20), we add the bilateral interaction {ij} to the partial outcome Λk . In (21) we

update the set of interactions Γk by eliminating all links among agents who are already

part of the outcome Λk+1, i.e. these are the autarkic relations of agents i and j, and all

interactions of i and j with any other agent who is part of the outcome Λk . �is is because

by construction agents in Λk are connected to their most preferred partners, and thus,

would not want to delete a link with their most preferred partner to join an interaction

with i or j. Last, in (22) we update the set of potential middlemen in the outcome Λk+1 by

adding both agents i and j as they can add interactions to the existing one.

Subsequently we proceed to step k + 1 in our construction process.

If i , j and i < Kk and j ∈ Kk , and uj (Λl ⊕ {ij}) ≤ uj (Λk ), then we de�ne

Λk+1 = Λk ;

Γk+1 = Γk \ {ij} ;

Kk+1 = Kk .
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�is is the case when an agent wants to join a multilateral interaction but the middleman

of this interaction is be�er-o� if the interaction is not added. �us, the only update is to

eliminate the non-desirable interaction from the middleman’s point of view from the set

of possible interactions to be considered in the next step.

We proceed to step k + 1 in our construction process.

If i , j and i < Kk and j ∈ Kk , and uj (Λl ⊕ {ij}) > uj (Λk ), then we de�ne

Λk+1 = Λk ⊕ {ij}; (23)

Γk+1 = Γk \ {Li (∆
m ) for all i ∈ Nj (Λk+1)} ; (24)

Kk+1 = Kk \ Nj (Λk ). (25)

�is is the case when an agent wants to join a multilateral interaction and the middleman

of this interaction is be�er-o� when the interaction is added. �us in (23) we add the inter-

action {ij} to the existing multilateral or bilateral interaction in which agent j is involved

in the partial outcome Λk . In (24) we remove from future consideration all interactions of

all agents with whom j is connected because those agents cannot add any new interaction

without deleting the one with j. For the same reason, we update the set of possible middle-

men in (25) by removing all agents with whom j is connected in Λk . �is is only important

if j is involved in a bilateral interaction in the outcome Λk .

We proceed through the procedure until for some k = ¯k we arrive at the situation that

Γ¯k = ∅. (Note that such a
¯k 6 |Γ | always exists.) Now consider Λ? = Λ ¯k . First, since

the procedure devised above assigns every agent to either an autarkic activity, a bilateral

interaction, or a multilateral interaction, Λ? is a multilateral outcome. Furthermore, each

constructed interaction in Λ? is based on either the optimality of an autarkic interaction,

the optimality of a bilateral interaction, or the optimality of adding an interaction for a

middleman. In the la�er case, the form of the hedonic pro�les given in (16) imply that the

utilities generated in the constructed multilateral interactions in Λ? are maximal under the

imposed restrictions as well. Finally, this also guarantees that the middleman of multilat-

eral interaction G ∈ Σ(Γ) ∩ Λ? does not have any incentives to break any relationships

with members i ∈ N (G ). �is implies, therefore, that the constructed multilateral outcome

Λ? is indeed strongly stable as required.

�is concludes the Proof of Case I.

Case II: Suppose Γ contains a cycle C = (i1, . . . ,im ) of length m − 1 = 6s for some s ∈ N.

Since the length of the cycle is at least 6, it holds that for all distinct agents i, j ∈ N who

are connected in a multilateral interaction G via a middleman c (ic, jc ∈ G), ij < Γ, and,

therefore, for all agents i ∈ N the utility functionui : Ai (∆) → R takes the form of equation

(16).

Depending on the utility pro�le, we distinguish two sub-cases. In the �rst case the

utility pro�le is such that the property of Lemma 2 is satis�ed, and, thus, in all sub-sets

of the simple interaction structure there exists a pair of agents who are in each other’s set

of most preferred partners. In the second case, the opposite is true, i.e., the utility pro�le

is such that in at least one sub-set of the simple interaction structure all agents’ most

preferred partners do not have them in their respective sets of most preferred partners.

Whereas in the former case we can follow the algorithm described in Case I to �nd a

strongly stable outcome, in the la�er case we show how the algorithm has to be augmented

to �nd a strongly stable outcome.
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Case II.a: Consider a utility function ui ∈ UL which exhibits link-based externalities. For

the utility pro�le to satisfy the property of Lemma 2, it must be that (a) there exists an

agent ik with k = 1, . . . ,m − 1 such that ik ∈ Bik (∆
m,u); or (b) there are two consecutive

agents along the cycle ik−1,ik ∈ C for some k = 1, . . . ,m − 1 with i0 = im−1 such that

ik−1 ∈ Bik (∆
m,u) and ik ∈ Bik−1

(∆m,u); or (c ) there is a pair of agents one of whom is on

the cycle and the other not, i.e., ik ∈ C for some k = 2, . . . ,m − 1 and j < C such that

j ∈ Bik (∆
m,u) and ik ∈ Bj (∆

m,u). �en, we can use the algorithm described in Case I to

construct a strongly stable assignment. �e utility pro�le ensures that in each step k of the

algorithm such that Γk , 0, there is (a) an agent i ∈ N such that i ∈ Bi (Γk ,u); or (b) there

is a pair of distinct agents i, j ∈ N such that j ∈ Bi (Γk ,u) and i ∈ Bj (Γk ,u). �erefore, in this

case, the presence of a cycle is immaterial for the implementation of the algorithm.

A similar argument applies to ui ∈ UN .

Case II.b: Last, consider a pro�le of utility functionsui ∈ UL which satis�es the link-based

externality property. For the utility pro�le to violate the property of Lemma 2, it must be

that the utility pro�le is such that (a) for all agents ik along the cycle C = (i1, . . . ,im ) in Γ
with k = 1, . . . ,m−1, ik < Bik (∆

m,u); (b) for all consecutive agents along the cycle ik−1,ik ∈
C for some k = 1, . . . ,m − 1 with i0 = im−1, if ik−1 ∈ Bik (∆

m,u), then ik < Bik−1
(∆m,u); and

(c) for all pairs of distinct agents ik j ∈ ∆
m

of whom ik ∈ C is on the cycle and j < C is not,

it does not hold that j ∈ Bik (∆
m,u) and ik ∈ Bj (∆

m,u).
For a utility function (16) to satisfy (a)-(c) above there are only three possibilities:

13

(i) uik (ikik ) 6 uik (ik−1ik ) < uik (ik ,ik+1) 6 uik (ikik−1ik+1);

(ii) uik (ikik ) 6 uik (ik−1ik ) 6 uik (ikik−1ik+1) < uik (ik ,ik+1); or

(iii) uik (ik−1ik ) < uik (ikik ) < uik (ik ,ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1.

Suppose, the pro�le of utility function is as in (i), i.e.,uik (ikik ) 6 uik (ik−1ik ) < uik (ik ,ik+1) 6
uik (ikik−1ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1 and consider the partial multilateral

outcome for the agents along the cycleC = (i1, . . . ,im ) of lengthm−1 = 6s for some s ∈ N.

Λ1 = { {i2i1i3}, {i5i4i6}, . . . , {im−2im−3im−1} } .

Here the agents along the cycles are organized in exactly 2 × s multilateral interactions.

Moreover, these agents have no blocking opportunities and all IR, PS, PS
∗
, and RP condi-

tions are satis�ed. For example, consider agent i3. �is agent prefers to be in a bilateral

interaction with agent i4 than in a multilateral interaction with i2 and i1. Agent i4, however,

prefers to stay in the multilateral interaction where i5 acts as a middleman than move to a

bilateral interaction with i3. �erefore, a multilateral outcome where the agents along the

cycle are organized in 2 × s multilateral interactions as de�ned in Λ1 and all other agents

outside the cycle are organized via the algorithm described in Case 1 is strongly stable.

Next, suppose the pro�le of utility function is as in (ii), i.e., uik (ikik ) 6 uik (ik−1ik ) 6
uik (ikik−1ik+1) < uik (ik ,ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1.

14
In addition, consider

the partial multilateral outcome, Λ2, for all agents along the cycle

Λ2 = { {i1i2}, {i3i4}, . . . , {im−1im−2} } .

13
Recall that by assumption we have uik (ik ik ) ≤ uik (ik−1ik ) and uik (ik ik ) ≤ uik (ik ,ik+1) implies that

uik (ik ik ) ≤ uik (ik ik−1ik+1). �is assumption is innocuous in this context.

14
Notice that for a utility function (16) to satisfy this relation, it must be that uik (ik−1ik ) < 0.
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Λ2 consists of exactly 3 × s bilateral matchings. Notice that there are no blocking possi-

bilities and all relevant no-blocking conditions IR, PS, and PS
∗

are satis�ed for all agents

along the cycle. For example, consider agent i2: i2 prefers to be linked to i3 either in bilat-

eral interaction i2i3 or in the multilateral interaction i3i2i4 than to be matched to i1. Agent

i3, however, prefers to be in a matching with i4 than to add the link with i2 and act as mid-

dleman. �erefore, a multilateral outcome, where the agents along the cycle are organized

in 2× s multilateral interactions as de�ned in Λ2 and all other agents outside the cycle are

organized via the algorithm described in Case 1 is strongly stable.

Last, let the pro�le of utility function be as in (iii), i.e.,uik (ik−1ik ) < uik (ikik ) < uik (ik ,ik+1)
for all k = 1, . . . ,m − 1 with i0 = im−1. In addition, consider partial outcome, Λ3, where all,

m − 1, agents along the cycle are autarkic.

Λ3 = { {i1i1}, {i2i2}, . . . , {im−1im−1} } .

Notice that again there are no blocking opportunities for any agent along the cycle. For

example, consider agent i1. Agent i1 prefers to be in a bilateral interaction with agent

i2. Agent i2, however, prefers to be in autarky than to be matched to i1. �erefore, a

multilateral outcome, where the agents along the cycle are organized in m − 1 autarkies

as de�ned in Λ3 and all other agents outside the cycle are organized via the algorithm

described in Case 1 is strongly stable.

Again a similar argument applies to ui ∈ UN .

�is completes the proof of Case II.

Only if: Let there be a strongly stable multilateral outcome in the network economy

(N ,∆,u) for all u ∈ UN ∪ UL. We show by contradiction the necessity of the condition

that Γ contains no cycles, or that if it contains a cycle, it is a cycle with an even number of

connected agents which is also a multiple of 3. We discuss two cases: the �rst case is when

the length of the cycle is even but not a multiple of three, and the second one is when

the length is odd. In both cases we identify utility pro�les for which no strongly stable

outcomes exist in the network economy.

Case I: Suppose that the network structure Γ contains a cycle C = (i1,i2, . . . ,im ) with

{ikik+1} ∈ Γ for all k = 1, . . . ,m − 1 andm > 4 andm − 1 is an even number which is not a

multiple of 3.

Now, consider a utility pro�le u ∈ UL such that uj (ik j ) < uj (jj ) and

uik (ik j ) < uik (ikik ) < uik (ik−1ik ) < uik (ikik+1) < uik (ikik−1ik+1)

for all k = 1, . . . ,m − 1 with i0 = im−1 and all j ∈ Nik (Γ) \ {ik−1ik+1}. Let Λ? be a strongly

stable multilateral outcome in this network economy. Note that in the strongly stable out-

come Λ? the largest number of agents located along the cycle who can form a multilateral

interaction that satis�es IR is three and that all of the agents in such a multilateral interac-

tion are located along the cycle. In addition, since the length of the cycle is not a multiple

of three, it must be that in Λ? at least one agent is autarkic or at least two agents are in a

bilateral interaction. We consider two sub-cases.

Case I.A: First, suppose that {ikik } ∈ Λ
?

for some k = 1, . . . ,m − 1. Since Λ? is a strongly

stable outcome, the individual rationality condition is satis�ed for all agents in N . Hence,

agent ik−1 is in a state of autarky; or connected to agent ik−2 either in the bilateral inter-
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action д′ = {ik−1ik−2}, or the multilateral interaction д′′ = {ik−2ik−1ik−3} with i0 = im−1,

i−1 = im−2, and i−2 = im−3. Moreover, using equation (16) to derive the utility of player ik−1

we note that uik−1
(д′) = uik−1

(д′′). In all three cases the PS condition for agents ik−1 and ik
is violated: uik (ik−1ik ) > uik (ikik ) and uik−1

(ik−1ik ) > uik−1
(д′′) = uik−1

(д′) > uik−1
(ik−1ik−1).

�erefore, the strong stability of Λ? implies that {ikik } < Λ
?

for any ik ∈ C .

Case I.B: Next, suppose that strongly stable multilateral outcome Λ? contains a bilateral

interaction {ikik+1}. �en, agent ik−1 is connected to agent ik−2 either through the bilateral

interaction д′ = {ik−2ik−1}, or the multilateral interaction д′′ = {ik−2ik−3ik−1} with i0 = im−1,

i−1 = im−2, i−2 = im−3, and i−3 = im−4.
15

In all cases the no blocking condition PS* for agents

ik−1 and ik is violated: uik−1
(ikik−1ik+1) = uik−1

(ik−1ik ) as the bilateral interaction ik−1ik+1 <
Γ, and therefore equation (16) holds; furthermore by the de�nition of the utility function

for Case I, we have uik−1
(ik−1ik ) > uik−2

(д′) = uik−2
(д′′) and uik (ikik−1ik+1) > uik (ikik+1) with

k−1 =m − 2.

Hence, when Γ contains a cycle with an even number of connected agents which is not

a multiple of three, there are such utility pro�les that satisfy the link-based externality

properties, for which there is no strongly stable outcome in the network economy.

Case II: Now suppose that the network structure Γ contains a cycle C = (i1,i2, . . . ,im )
with ik ,ik+1 ∈ Γ for all k = 1, . . . ,m − 1 andm > 4 andm − 1 is an odd integer.

Now, consider a utility pro�le u ∈ UN ∪UL such that uj (ik j ) < uj (jj ) and

uik (ik j ) < uik (ikik ) < uik (ik−1ik ) < uik (ikik−1ik+1) < uik (ikik+1)

for all k = 1, . . . ,m − 1 with i0 = im−1 and all j ∈ Nik (Γ) \ {ik−1ik+1}. Let Λ? be a strongly

stable multilateral outcome in this network economy. Note that in the strongly stable out-

come Λ? the largest number of agents located along the cycle that can form a multilateral

interaction that satis�es the IR condition is three. In addition, since the length of the cycle

is odd, in the outcome Λ? there must be at least one agent who is autarkic or at least three

agents who are in a multilateral interaction. We consider two sub-cases.

Case II.a: First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m − 1. Similar to Case I.A,

we can show that the PS condition must be violated for agents ik−1 and ik as uik (ik−1ik ) >
uik (ikik ) and uik−1

(ik−1ik ) > uik−1
(Λ?) ≥ uik−1

(ik−1ik−1). Since Λ? is strongly stable, then it

cannot be that {ikik } ∈ Λ
?

for some ik ∈ C .

Case II.b: Lastly, suppose that the multilateral interaction {ikik−1ik+1} ∈ Λ? for some

k = 1, . . . ,m − 1 with k0 = im−1 and km+1 = i1. In this case the RP condition is violated for

agent ik as uik (ikik−1ik+1) < uik (ikik+1). Since Λ? is strongly stable, then it cannot be that

{ikik−1ik+1} ∈ Λ
?

for some ik−1,ik ,ik+1 ∈ C .

Hence, when Γ contains a cycle with an odd number of connected agents, there are such

utility pro�les that satisfy the link-based externality property, for which there is no strongly

stable multilateral outcome in the network economy.

�is completes the proof of �eorem 4.8(iii).

Proof of �eorem 4.8(ii)

If: Consider a network economy E = (N ,∆,u) such that u ∈ UL exhibits link-based

externalities and δ ∈ (0,1). We consider two cases: (I) when Γ does not contain any cycle;

15
Recall that Case I.a rules out that {ik−1,ik−1} ∈ Λ

?
.
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(II) when Γ contains a cycle with a number of connected agents that is a multiple of 3 and

greater than 3.

Case I: Suppose that Γ is acyclic. Since strong stability implies stability, the proof of Case

I follows the steps in Case I of the proof of �eorem 4.8(iii).

Case II: Suppose that Γ has a cycle C = (i1, . . . ,im ) with m > 5 and m − 1 = 3s for some

s ∈ N. Since the length of the cycle is at least 6, it holds, as in the proof of �eorem 4.8(iii),

that for all distinct agents i, j ∈ N who are connected in a multilateral interaction G via

a middleman c (ic, jc ∈ G), ij < Γ, and, therefore, for all agents i ∈ N the utility function

ui : Ai (∆) → R takes the form of equation (16).

Case II.a: First, consider a utility function ui ∈ UL which satis�es the link-based exter-

nality property, such that either (a) there exists an agent ik with k = 1, . . . ,m− 1 such that

ik ∈ Bik (∆
m,u); or (b) there are two consecutive agents along the cycle ik−1ik ∈ C for some

k = 1, . . . ,m − 1 with i0 = im−1 such that ik−1 ∈ Bik (∆
m,u) and ik ∈ Bik−1

(∆m,u); or (c )
there is a pair of agents one of whom is on the cycle and the other not, i.e., ik ∈ C for some

k = 2, . . . ,m− 1 and j < C such that j ∈ Bik (∆
m,u) and ik ∈ Bj (∆

m,u). �en, we can use the

algorithm described in Case I to construct a stable multilateral outcome since the utility

pro�le ensures that in any of the three cases described above, we can identify agents that

�t the requirements stated in Lemma 2.

Case II.b: Next, consider a pro�le of utility functions ui ∈ UL which exhibits link-based

externalities such that there is no agent ik with k = 1, . . . ,m − 1 such that ik ∈ Bik (∆
m,u),

or there are no consecutive agents along the cycle ik−1,ik ∈ C for some k = 1, . . . ,m − 1

with i0 = im−1 such that ik−1 ∈ Bik (∆
m,u) and ik ∈ Bik−1

(∆m,u), nor is there a pair of agents

one of whom is on the cycle and the other not, i.e., ik ∈ C for some k = 1, . . . ,m − 1 and

j < C such that ij ∈ Bik (∆
m,u) and ik ∈ Bj (∆

m,u).

�en, without loss of generality
16

, we may assume that max{uik (ikik ),uik (ik−1ik )} < uik (ikik+1),
for all k = 1, . . . ,m − 1 with i0 = im−1.

Suppose, �rst, that the pro�le of utility functions is

uik (ikik ) 6 uik (ik−1ik ) < uik (ikik+1)

for all k = 1, . . . ,m − 1 with i0 = im−1. �en, a (partial) multilateral outcome Λ1 can be

introduced that consists of exactly s multilateral interactions of the type

Λ1 = { {i2i1i3}, {i5i4i6}, . . . , {im−2im−3im−1} } .

Clearly, all no-blocking conditions IR and PS are satis�ed for the agents in Λ1. Consider,

for example, agent i3: i3 prefers to in a bilateral interaction with agent i4; i4, however, has

higher utility from the multilateral interaction i5i4i6 than the bilateral i3i4. Moreover the

no-blocking condition PS* is automatically satis�ed as no agent can add a link without

deleting all existing links. �erefore, a multilateral outcome where all agents on the cycle

are linked in multilateral interactions of the type described in Λ1 and all agents not on the

cycle are linked following the algorithm presented in Case I is stable.

16
�e statement is justi�ed because by assumption we have ruled out the degenerate case uik (ik ik ) ≤

uik (ik−1ik ) and uik (ik ik ) ≤ uik (ik ,ik+1) implies that uik (ik ik ) ≤ uik (ik ik−1ik+1). In this context when all

utility levels are negative and the number of connected agents on the cycle is odd, relaxing this assumption

may lead to instability.
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Last, suppose that the pro�le of utility function is given by

uik (ik−1ik ) ≤ uik (ikik ) < uik (ikik+1)

for all k = 1, . . . ,m − 1 with i0 = im−1. Consider an outcome where all agents along the

cycle are autarkic:

Λ2 = { {i1i1}, {i2i2}, . . . , {im−1im−1} } .

Notice that all relevant no-blocking conditions IR and PS are satis�ed with respect to these

agents. Consider for example agent ik . Agent ik prefers to be linked with agent ik+1. Agent

ik+1, however, prefers to be autarkic than to be in a matching with ik . �us a multilateral

outcome in which all agents along the cycle are autarkic as in Λ2 and all other agents are

linked following the algorithm presented in Case I constitutes a stable outcome.

�is completes the proof of Case II.

Only if: Let ∆ = Ω∪ Γ∪Σ(Γ) be a feasible activity structure and letUL be the collection

of hedonic utility pro�les exhibiting link-based externalities. We show by contradiction

the necessity of the condition that Γ contains no cycles or if it contains a cycle it is a cycle

with a number of connected agents equalm > 5 withm − 1 , 3s with s ∈ N.

Let there be a stable multilateral outcome in the network economy (N ,∆,u) for allu ∈ UL.

Let the network structure Γ contain a cycle C = (i1,i2, . . . ,im} with ik ,ik+1 ∈ Γ for all

k = 1, . . . ,m − 1 and m > 4 and m − 1 , 3s with s ∈ N with s > 1. We discuss two cases:

when the cycle consists of exactly three connected agent and when the number of agents

is not a multiple of 3.

Case I: Suppose �rst that the cycle contains exactly 3 agents,C = (i1,i2,i3,i1) and consider

the utility pro�le exhibiting link-based externalities with δ = 2/3: uik (ikik ) = 0, uik (ik j ) =
−∞ for all k = 1,2,3 and for all j ∈ Nik (Γ) \ {ik−1,ik+1} with k0 = 3 and k4 = 1; ui1 (i1i2) =
ui2 (i2i3) = ui3 (i2i3) = 2, ui1 (i1i3) = ui2 (i1i2) = 1 and ui3 (i1i3) = −4. Using equation (13), we

can easily calculate ui1 (i1i2i3) = ui2 (i2i1i3) = 3, ui1 (i2i1i3) = ui2 (i3i1i2) = 8/3, ui1 (i3i1i2) =
ui2 (i1i2i3) = 7/3, ui3 (i3i1i2) = −2, ui3 (i1i2i3) = −8/3, and ui3 (i2i1i3) = −2/3.

For the sake of argument suppose a stable multilateral outcome exists. Clearly, in the

stable multilateral outcome no agent on the cycle can be linked to an agent not on the

cycle as such an outcome would violate the IR condition for the agents on the cycle. We

are going to discuss all possible states for agent i1—autarky, bilateral interactions, and

multilateral interactions—and show that in each case at least one of the no-blocking con-

ditions is violated. First, it is clear that we cannot have agent i1 autarkic as this will

violate (a) the PS condition if agent i2 is also autarkic (ui1 (i1i1) = 0 < 2 = ui1 (i1i2)
and ui2 (i2i2) = 0 < 1 = ui2 (i1i2)); or (b) the PS* condition if agent i2 is in a bilat-

eral interaction with i3 and can add the link with i1 without deleting the link with i3
(ui1 (i1i1) = 0 < 8/3 = ui1 (i2i1i3) and ui2 (i2i3) = 2 < 3 = ui2 (i2i1i3)). Next, consider

the bilateral interactions for agent i1, (a) i1i2 and (b) i1i3: they cannot be part of the sta-

ble outcome because in the case of (a) the PS condition for agents i2 and i3 is violated

(ui2 (i1i2) = 1 < 2 = ui2 (i2i3) and ui3 (i3i3) = 0 < 2 = ui3 (i2i3)); and in the case of (b) the IR

condition for agent i3 is violated (ui3 (i3i3) = 0 > −4 = ui3 (i1i3)). �us the only alternative

le� to discuss is the multilateral outcome when agents on the cycle are linked in a multi-

lateral interaction. In all three possible multilateral interactions, however, the IR condition
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for agent i3 is not satis�ed. Hence with the above link-based externality pro�le we have

established a contradiction to the statement than stable multilateral outcome exists.

Case II: Next, suppose that the cycle contains a number of agents which is not a multiple

of 3. Now, consider a utility pro�le u ∈ UL such that uik (ik j ) < uik (ikik ) < uik (ik−1ik ) <
uik (ikik+1) < uik (ikik−1ik+1) for all k = 1, . . . ,m − 1 with i0 = im−1 and all j ∈ Nik (Γ) \
{ik−1,ik+1}. Let Λ? be a stable multilateral outcome in this network economy. Note that

in the stable outcome Λ? the largest number of agents along the cycle that can form a

multilateral interaction that satis�es the IR condition is three.

Since the length of the cycle is not a multiple of 3, in any outcome along the cycle there

must be at least one agent who is autarkic or at least two distinct agents who are in a

bilateral interaction. We discuss these two sub-cases separately and in both cases establish

a contradiction to the statement that Λ? is stable.

Case II.a: First, suppose that ikik ∈ Λ? for some k = 1, . . . ,m − 1. Since Λ? is a stable

outcome, the IR condition is satis�ed for all agents in N . Hence, agent ik−1 is in a state of

autarky or connected to agent ik−2 either in the bilateral interaction д′ = {ik−1ik−2}, or in

the multilateral interaction д′′ = {ik−2ik−1ik−3} with i0 = im−1, i−1 = im−2, and i−2 = im−3. In

all three cases the PS condition is violated: by the de�nition of the utility pro�le we have

uik (ik−1ik ) > uik (ikik ) and uik−1
(ik−1ik ) > uik−1

(д′′) = uik−1
(д′) > uik−1

(ik−1ik−1). Since Λ? is

stable, then it cannot be that {ikik } ∈ Λ
?

for some ik ∈ C .

Case II.b: Next, let the bilateral interaction {ik−1,ik } ∈ Λ
?

for some k = 1, . . . ,m − 1 and

k0 = m − 1. �en, agent ik−2 is connected to agent ik−3 either in the bilateral interaction

д′ = {ik−2ik−3}, or in the multilateral interaction д′′ = {ik−3ik−2ik−4} with i0 = im−1, i−1 =

im−2, i−2 = im−3, and i−3 = im−4. In all cases the no blocking condition PS
∗

is violated:

by the de�nition of the utility pro�le we have uik−2
(ik−1ik−2ik ) > uik−2

(д′) = uik−2
(д′′) and

uik−1
({ik−1ik−2ik }) > uik−1

(ik−1ik ) with k−1 =m − 2 .

Hence, when Γ contains a cycle with a number of connected agents equal exactly 3 or not

a multiple of three, there are such utility pro�les that exhibit link-based externalities, for

which there is no stable multilateral outcome in the network economy.

�is completes the proof of �eorem 4.8(ii).

Proof of �eorem 4.8(i)

If: Consider a network economyE = (N ,∆,u) such thatu ∈ UN exhibits no externalities.

We consider two cases: (I) when Γ does not contain any cycle; (II) when Γ contains a cycle

with a number of connected agents that is a multiple of 3.

Case I: Suppose that Γ is acyclic. Since strong stability implies stability, the proof of Case

I follows the steps in Case I of the proof of �eorem 4.8(iii).

Case II: Suppose that Γ has a cycle C = (i1, . . . ,im ) with m > 4 and m − 1 = 3s for some

s ∈ N. �e case when the length of the cycle is at least 6 has been discussed in the proof

of �eorem 4.8(ii). Notice that in that discussion we have not used the fact that δ ∈ (0,1),
and, therefore, the result carries through to the case under consideration here, i.e., when

δ = 0. So we only focus on the case when the length of the cycle equals exactly 3.

Consider a network structure Γ that contains a cycle with exactly three connected agents

C = (i1,i2,i3,i1) and notice that (12) implies that the analysis in the proof of 4.8(ii), Case II

holds in the case when the cycle contains only 3 agents.
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Only If: To show that when the number of agents on the cycle is not a multiple of 3, there

may be utility pro�les exhibiting no externalities for which there is no stable outcome, we

refer to discussion of the proof of 4.8(ii), Case II of Only If. Notice that in none of the utility

pro�les discussed there we have used the condition that δ ∈ (0,1), hence, the discussion

extends trivially to the case when δ = 0.

�is concludes the proof of �eorem 4.8(i), implying that we have shown all assertions in
�eorem 4.8.

C Proof of �eorem 4.13

Before we present the proof we state the following auxiliary result.

Lemma 4 Let (N ,∆,u) be a network economy and let Γ be a network structure that contains
no cycles. �en there exist at last two distinct agents in N who have exactly one link in Γ.

Proof. It is easy to show that Lemma 4 also follows immediately from the fact that the

network structure Γ contains no cycles and the �nite number of agents in N . Suppose

there is at most one agent in N who has exactly one link in Γ.
17

Take any agent i ∈ N
and suppose she has two links in Γ with agents j and k , respectively, where j , k . Since

all agents but one have at least two links, agent j or k must have at least two links, too.

Suppose, agent j has exactly two links with agents i and l where l , i and l , k , otherwise

there is a cycle in Γ. Similarly, agent l must have at least two links in Γ. Suppose agent l
has exactly two links with agents j andm wherem , j,m , i andm , k otherwise there is

a cycle in Γ. Following the same logical steps one arrives at the conclusion that the absence

of cycles in Γ and the �niteness of the agent set requires that there are at least two agents

who have exactly one link.

Proof of �eorem 4.13

Let E = (N ,∆,u) be a network economy such that u exhibits synergistic externalities with

αc > 0 for all potential middlemen c ∈ K (Γ). Suppose Γ contains no cycles. Without loss

of generality suppose that there is a path in Γ connecting any two distinct agents in N .
18

Next we re-label the argents to form a sequence that abides by the following rules:

1. Agents in the set N are labelled 1,2, . . . ,N such that any agent with label k where

k = 2,3, . . . ,N , is connected to exactly one agent in the set 1, . . . ,k − 1. By Lemma

4, there are at least two agents in the set N who have exactly one link in Γ. Suppose

these are agents i and j. �us we can re-label i = 1 and j = N .

2. �e length of the paths from agent 1 to any two consecutive agents in the sequence,

k − 1, k with k = 2, . . . ,N , i.e. |p1k−1 | and |p1k | cannot di�er by more than a unit

where the path of the agent with the higher label is at least as long as the one of the

agent with the lower label (|p1k−1 | + 1 ≥ |p1k | ).

17
Recall that we have ruled out the trivial case when there are agents who are not linked in Γ. �us, all

agents in N have at least one link in Γ.

18
In other words we assume that the graph consists of a single component. �is assumption goes without

loss of generality as should there be more than one components in the graph, the reasoning presented below

can be applied to each component separately. Since there is no link that connects individuals from di�erent

components, there are no externalities that need to be taken into account in the construction of a stable

outcome either.
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�e proof now proceeds by induction. Suppose there are stable outcomes, Λk−2, Λk−1 and

Λk , in the network economies restricted to the �rst k−2, k−1 and k agents in the sequence

and the links amongst them with k ≥ 3, i.e., (N s ,Γs ,u) with N s = {1, . . . ,s} and Γs = {ij ∈ Γ
such that i ∈ N s

and j ∈ N s } for s = k − 2,k − 1,k .

Consider the network economy (N k+1,Γk+1,u) restricted to the �rst k + 1 agents and the

links amongst them, i.e., N k+1 = {1, . . . ,k + 1} and Γk+1 = {ij ∈ Γ such that i ∈ N k+1
and

j ∈ N k+1

}
. Notice that by the construction of the sequence of agents, Γk+1

di�ers from

Γk only by the additional link of agent k + 1 with exactly one agent in N k
. For ease of

exposition, suppose that agent k +1 has a link with agent k in Γk+1
; agent k has a link with

agent k − 1 in Γk ; and agent k − 1 has a link with agent k − 2 in Γk−1
. In the discussion

below, we point out how this restriction can be relaxed.

Case I: Suppose that under Λk agent k can add the link with agent k + 1 without deleting

all her links.
19

If the utility that agent k can gain from becoming a middleman is at most the utility she

would lose from the direct link with k + 1 (uk (kk + 1) ≤ −αk ) or agent k + 1 is as be�er o�

autarkic as he is in a multilateral interaction where agent k acts as a middleman with two

other participants (uk+1(k + 1k + 1) ≥ uk+1(kk + 1) + αk ), then Λk+1 = Λk ∪ {k + 1k + 1} is

a stable outcome in this economy.
20

If, on the other hand, both agents k and k + 1 are be�er-o� by adding the interaction

(uk (kk + 1) > −αk and uk+1(kk + 1) + αk > uk+1(k + 1k + 1), then Λk+1 = Λk ⊕ {kk + 1} is

stable where the operator ⊕ as de�ned above signi�es that agent k has added the link with

k + 1 to her existing interactions in Λk . �is is the case because all agents who are linked

to k in Λk gain αk in utility due to the size-based externality, thus, these agents would not

want to deviate in Λk+1 if they do not want to deviate in Λk where their utility is lower and

have the same set of potential partners.
21

Last, consider the case when agent k prefers to sever the link with k − 1 and join k + 1

in a bilateral interaction (uk (kk − 1) < uk (kk + 1) < −αk ) and k + 1 is be�er o� in the

bilateral interaction with k than in an autarky (uk+1(k + 1k + 1) < uk+1(kk + 1)). �en

the outcome Λk+1 = Λk−1 ∪ {kk + 1} is stable. To see that recall that the outcome Λk−1

is stable for all N k−1
agents and that by Lemma 3 the only link between the set of agents

N k−1
and {k ,k + 1} is the one between k − 1 and k . �ese two players, however, cannot

form a blocking pair as clearly the PS and PS* condition when k acts as a middleman are

satis�ed given the conditions on the utility function of agent k . �e PS* condition when

k − 1 acts as a middleman must be satis�ed since {k − 1,k } ∈ Λk . �is implies that either

agent k − 1 under Λk−1 cannot act as a middleman, or that uk−1(k − 1,k ) < −αk−1, hence

agent k − 1 does not want to add the link with k without severing all his existing links in

Λk−1.
22

19
By construction this implies that the interaction {k − 1k } ∈ Λk .

20
Notice that here the assumption that agents k − 1and k have only a link with agent k − 2 in Γk−1

and

k − 1 in Γk , respectively, goes without loss of generality. �e same reasoning would hold if k is a middleman

of a multilateral interaction with s members and the only amendment that would be necessary is to require

that agent k + 1 is as be�er o� autarkic as in a multilateral interaction with k as a middleman and s other

members (uk+1 (k + 1k + 1) ≥ uk+1 (kk + 1) + αks).
21

Notice again that the reasoning does not hinge on the assumption that k has a link with only one agent

in Γk . Moreover, additional straightforward requirements on the ordering of the agents in the sequence can

ensure that there are no agents with a label preceding that of k + 1 who have a link with k and who prefer

not to be linked to k in Λk but prefer to be linked with her in Λk+1.

22
Here, the assumption that agent k has only one link and that is with agent k − 1 who is preceding her

in the sequence requires a clari�cation. Had agent k have also links with other agents whose labels follow k
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Case II: Next, suppose that under Λk agent k cannot add the link with agent k +1 without

deleting all her links. If agent k is at least as be�er o� under the outcome Λk as she is in a

bilateral interaction with k+1 (uk (Λk ) ≥ uk (k ,k+1)) or if agent k+1 is at least as be�er-o�

autarkic than as he is in a bilateral interaction with agentk (uk+1(k+1,k+1) ≥ uk+1(k ,k+1),
then Λk+1 = Λk ∪ {k + 1,k + 1} is a stable outcome in this economy. �is is easy to see,

since by construction agent k + 1 has a link only with agent k and these two agents do not

want to engage,
23

then the stability of Λk implies the stability of Λk+1.

Suppose, instead, that agent k prefers to sever her links in Λk to be in a bilateral interaction

with k + 1 (uk (Λk ) < uk (k ,k + 1) and k + 1 prefers to be in a bilateral interaction with k
than autarkic (uk+1(kk + 1) < uk+1(k + 1,k + 1). If agent k − 1 is at least well-o� under

outcome Λk−1 as in a multilateral interaction of size 3 with agent k acting as a middleman

(uk−1(Λk−1) ≥ uk−1(k − 1,k ) + αk ) or the utility agent k gains from the direct link with

agent k − 1 is at most equal to the negative of the size-based externality she can generate

as a middleman (uk (k − 1,k ) ≤ −αk ), then Λk+1 = Λk−1 ∪ {k,k + 1} is a stable outcome.

�at there are no blocking possibilities between k − 1 and k is ensured by the stability of

Λk−1 and Λk , where agent k is either autarkic or in a multilateral interaction of which she

is not the middleman (due to the fact that she has to sever all links in Λk to add a link with

k + 1), and the above restrictions on the utility pro�les which dictate the satisfaction of all

non-blocking conditions between players k − 1 and k .
24

Last consider the case where agent k prefers to sever her links in Λk to be in a bilateral

interaction with k +1 (uk (Λk ) < uk (k ,k +1) and k +1 prefers to be in a bilateral interaction

with k than autarkic (uk+1(k ,k + 1) < uk+1(k + 1,k + 1). In addition, let agent k − 1 be

be�er-o� in a multilateral interaction of size 3 with agent k acting as a middleman than

under Λk−1 (uk−1(Λk−1) < uk−1(k − 1,k ) + αk ) and the utility agent k gains from adding

agent k − 1 to the multilateral interaction is strictly positive (uk (k − 1,k ) > −αk ), then

Λk+1 = Λk−2 ∪ {k .k − 1.k + 1} is a stable outcome. To see that notice that the only blocking

possibility for k + 1 is to the autarkic state which is ruled out by the preference pro�le

and the fact that k + 1 gains from the positive size-based externality when k − 1 joins the

multilateral interaction. �e same analysis holds for the blocking possibility of agent k ,

which is ruled out by the preference pro�le speci�ed above and that Λk is stable, thus, the

IR is satis�ed for all agents, including k .
25

In addition to the autarkic state, which is ruled

out as a blocking possibility in a similar fashion as it is done for agents k and k + 1, agent

and precede k +1, then those agents would have been le� autarkic in the stable outcome Λk+1. Recall that by

the de�nition of the sequence all such agents would be equidistant from the origin, agent 1, as agent k + 1,

thus, all such agents would have had only one link in Γk+1
and that would have been with agent k . Since k

would sever all links to be in a bilateral interaction with k + 1, those agents would remain autarkic with no

potential partners to form links but k .

23
Notice that in this case the assumption that agents k − 1 and k have only one link in Γk−1

and Γk ,

respectively, goes without loss of generality as no other agent who has a link with k can have a link with

k + 1 by Lemma 3.

24
Similar to the discussion in footnote 21, had agent k have multiple links with agents whose labels follow

hers, those agents would be autarkic in the stable outcome Λk+1.

25
If there were other agents but k+1 who followed k and had a link with her, the construction of the stable

outcome would have involved the addition to the multilateral interaction of all those agents who preferred

to be members of the multilateral interaction than being autarkic and who earn su�ciently high utility to k
for her to add the link. �e remainder of the agents would stay autarkic in Λk+1. Such an outcome would

be stable as neither the autarkic players nor those in the multilateral interaction whose label is higher than

k have any other links in Γk+1
but the one with k . As in the analysis provided in the main text, in this case,

too, the only blocking possibility for k would be to sever all links but given the utility pro�le and the fact

that Λk is stable, the IR condition is satis�ed.
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k − 1 may have a blocking possibility with agent k − 2 due to the failure of the PS or PS*

condition whenk−2 acts as a middleman.
26

�ese two conditions, however, are guaranteed

by the requirement thatuk−1(Λk−1) < uk−1(k−1,k )+αk . �erefore, by the above discussion

and the fact that Λk−2 is a stable outcome, we have shown that Λk+1 constitutes a stable

outcome, too.

Finally to complete the proof by induction we show that the initial conditions for k = 1,2,3
are satis�ed. �e case when k = 1 is trivial as Λ1 = |11| is clearly stable. Consider N 2 =

{1,2} with Γ2 = {12}. If u1(11) ≥ u1(12) or u2(22) ≥ u2(12), then Λ2 = {{11}, {22}} is stable.

Otherwise, if both agents prefer to be in a bilateral interaction than autarkic, thenΛ2 = {12}

is stable. Last, consider N 3 = {1,2,3} with Γ2 = {{12}, {23}}. If all agents are at least as

be�er-o� in autarky as in any bilateral interaction, u1(11) ≥ u1(12) or u2(22) ≥ u2(12) and

u2(22) ≥ u2(23) or u3(33) ≥ u3(23), then Λ3 = {{11}, {22}, {33}} is stable. In case at least

one pair of agents who have a link prefer to be in a bilateral interaction than in autarky

but the third agent prefers autarky than to be in a multilateral interaction, or the agent

who may act as a middleman prefers not to add the link, we have the following stable

outcome. If u1(11) < u1(12) and u2(22) < u2(12) and u3(33) ≥ u3(23) +α2 or u2(23) ≤ −α2,

then Λ3 = {{12}, {33}} is stable. Similarly, if u3(33) < u3(23) and u2(22) < u2(23) and

u1(11) ≥ u1(12)+α2 oru2(12) ≤ −α2, then Λ3 = {{11}, {23}} is stable. Finally, a multilateral

interaction Λ3 = {213} would be stable in the following two cases: u1(11) < u1(12) and

u2(22) < u2(12) and u3(33) < u3(23) + α2 and u2(23) > −α2 or u3(33) < u3(23) and

u2(22) < u2(23) and u1(11) < u1(12) + α2 and u2(12) > −α2.

�is completes the proof of �eorem 4.13.

26
�e assumption that agent k − 1 has only a link with k − 2 in Γk−1

can be relaxed in a similar fashion

as the assumption concerning agent k . If there are agents who have labels higher than k − 1 (other than k)

and who have a link with k − 1, then when k − 1 severs his links with them, they may only participate in

activities with other agents who are equidistant from the origin as k + 1 (i.e. be in a bilateral interaction or a

middleman of a multilateral interaction) given the rules by which the sequence is constructed or be autarkic.

Notice that due to Lemma 3 the presence of k + 1 does not present any further blocking possibilities for such

agents than the ones present under Λk . �us Λk+1 can be augmented by including these agents in stable

partial outcome of autarkies, bilateral, or multilateral interactions amongst them. Moreover, these agents do

not have any links with agents in N k−2
, thus the stability of Λk−2

holds through.
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