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Abstract

We consider a normal form game in which there is a single exogenously given coalition of
cooperating players that can write a binding agreement on pre-selected actions. �e actions
representing other dimensions of the strategy space remain under the sovereign, individual
control of the players.

We consider a standard extension of the Nash equilibrium concept denoted as a partial
cooperative equilibrium as well as an equilibrium concept in which the coalition of cooperators
has a leadership position. Existence results are stated and we identify conditions under which
the various equilibrium concepts are equivalent.

We apply this framework to existing models of multi-market oligopolies and international
pollution abatement. In a multi-market oligopoly typically a merger paradox emerges in the
partial cooperative equilibrium. �e paradox vanishes if the cartel a�ains a leadership posi-
tion. For international pollution abatement treaties, cooperation by a su�ciently large group
of countries results in a Pareto improvement over the standard tragedy of the commons out-
come described by the Nash equilibrium.
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1 Introduction

We consider a game theoretic framework for understanding collaborative decision situations em-
bedded in competitive environments. O�en these kinds of agreements on a speci�c economic issue
involve a single group of decision makers who cooperate. �is coalition writes a binding agreement
concerning certain exogenously given jointly decided actions, while the non-collaborative decision
makers remain uninvolved. Moreover, while decision makers subject to this binding agreement
may cooperate on certain issues, these same players may act non-cooperatively when interacting
with all other players along other dimensions. Examples where these tools are applicable range
from areas as diverse as environmental agreements (Barre� 1990, Carraro and Siniscalco 1993),
R&D collaborations (Yi and Shin 2000, Banal-Español et al. 2013), and �nancial alliances between
banks (White 1996, Popov and Ongena 2011, In ’t Veld and van Lelyveld 2014).

A rigorous analysis of these games with partial cooperation calls for the development of specif-
ically tailored equilibrium concepts. Our notion of partial cooperative equilibrium extends standard
Nash best response rationality to our framework and is similar to the coalition equilibrium concept
of Ichiishi (1981). Here, the cooperating players write a binding agreement with regard to a spe-
ci�c set of actions, and, simultaneously, act non-cooperatively with regard to their individualistic or
“private” strategy. �e non-cooperators act independently from the cooperators and select a stan-
dard best response strategy to all other players’ actions. By supplementing the strategy space of
the cooperators with a private strategy, this de�nition generalises the concept of a partial coopera-
tive game in Chakrabarti et al. (2011). Our partial cooperative equilibrium existence result extends
the existence theorems seminally stated in Mallozzi and Tijs (2008a, 2009, 2012) for more restricted
environments. Our result is based on techniques seminally developed by Glicksberg (1952).

Next, we consider a leadership equilibrium concept, which postulates that the cooperating coali-
tion has a (Stackelberg) leadership position. Hence, a�er a binding agreement has been signed by
the cooperative players, all players – cooperators as well as non-cooperators – make independent
decisions with regard to all other actions.

�e underlying sequential decision process in a normal form game was seminally discussed
and developed in Section 3.5 of Ray (2007). �is structure was �rst implemented to partial cooper-
ative games by Mallozzi and Tijs (2008a) and subsequently extended in Mallozzi and Tijs (2008b),
Chakrabarti et al. (2011) and Mallozzi and Tijs (2012). Our leadership equilibrium notion builds
on this work. Mallozzi and Tijs (2008a) proposed this concept for the class of symmetric potential
games. In a subsequent study, Mallozzi and Tijs (2009) consider symmetric aggregative games. �e
situation when the cooperating agents are faced with multiple Nash equilibria when interacting
with the non-cooperative agents is discussed in Mallozzi and Tijs (2008b). Chakrabarti et al. (2011)
extended this further to arbitrary non-cooperative games.

We design an extension to the leadership equilibrium notion along several dimensions. First, we
extend the strategy space for the cooperators such that actions not subject to coalitional decision
making are decided simultaneously by all players – cooperators as well as non-cooperators. Second,
we consider a generalised aggregation of the payo�s of the cooperators to evaluate coalitional de-
cisions. A commonly applied aggregator is the utilitarian aggregator. �e utilitarian aggregator is
imposed, for example, in the theory of (standard) partial cooperative games as seminally developed
in Mallozzi and Tijs (2009). Alternative aggregators that can be handled by our generalised frame-
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work are the Rawlsian aggregator (Rawls 1999) and the Nashian aggregator (Nash 1950). �ird,
following Chakrabarti et al. (2011), we assume that in the case of multiple Nash equilibria, the co-
operators act optimistically and employ a max-max strategy with regard to their payo�s. Finally,
we study the existence properties of our notions in a much larger class of normal-form games.

We investigate two applications of our general framework. In the �rst application, we borrow
the model of cartel formation in a multi-market Cournot oligopoly from Billand et al. (2014). Firms
compete in two separate markets. Cooperators collude with regard to quantity choice in one mar-
ket and not in the other. In the partial cooperative equilibrium, cooperators are worse o� than in
the standard competitive Cournot-Nash equilibrium due to the merger paradox (Salant et al. 1983)
if the market on which cooperation occurs is su�ciently large relative to the competitive market.
If the market on which �rms cooperate is su�ciently small, however, it may be the case that par-
tial cooperation leads to strictly higher payo�s to all �rms compared to the standard competitive
equilibrium. On the other hand, in the leadership equilibrium, cartel members as well as regular
competitors are be�er o� relative to the Nash equilibrium, achieving a strict Pareto improvement,
thereby restoring a clear incentive to establish a cartel in such a multi-market oligopoly.

In the second application, we consider the e�ects of international pollution abatement treaties.
Such treaties are best described as partial cooperative agreements: A single coalition of treaty coun-
tries writes a binding agreement on certain aspects of the spectrum of economic controls at the dis-
posal of a country’s government. �e 1997 Kyoto treaty, for example, only regulated emissions of
carbon dioxide (“carbon production”) rather than the carbon consumption, which normally results
from many other economic variables (Helm 2012, Newell et al. 2013).

Our partial cooperative approach supplements Chander and Tulkens (1997)’s model of emis-
sions control with an additional labour input besides the usual polluting factor. Cooperators choose
the amount of labour freely, but form a cooperative agreement with regard to the amount of pol-
lutants. In this context, there is no di�erence between the partial cooperative equilibrium and the
leadership one, but both di�er from the Nash outcome. Here, only cooperators reduce the amount
of pollutants and the level of reduction is greater, the larger is the number of cooperators. All
non-treaty countries act as free-riders in these equilibrium situations.

2 Generalised partial cooperative games

We consider normal form games in which an ex-ante postulated group of players collaborates and
writes binding agreements on a given subset of actions. All players outside this coalition of coop-
erators are assumed to follow their individual objectives.

�roughout, let C = {1, . . . ,k} be a given and pre-determined coalition of cooperators, where
k > 2. Furthermore, let N = {1, . . . ,n} with n > 1 be the set of non-cooperative players. �us, the
population of all players is given byC ∪N , consisting of k cooperating players and n individualistic
players. We indicate a generic member of the coalition of cooperators by i ∈ C , while a generic
non-cooperative player is denoted by j ∈ N . We consider three separate types of actions:

• Each individual i ∈ C controls the selection of a private action xi ∈ Xi , where Xi , �

denotes i’s private action set. We let X =
∏

i ∈C Xi be the private action tuple set of the
coalition of cooperators C .
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• �e coalition of cooperators C selects cooperatively a collective action y ∈ Y , �.1

• Finally, each non-cooperator j ∈ N selects an individual action zj ∈ Z j , �. We denote
Z =

∏
j ∈N Z j the non-empty action tuple set of the group of non-cooperators N .

Given the three types of actions we now denote by

a = (x ,y, z) ∈ A ≡ X × Y × Z (1)

a general action tuple, where A is the space of all feasible action tuples.
Additionally, following accepted conventions, for every cooperator i ∈ C and private action

tuple x ∈ X we denote by x−i = (x1, . . . ,xi−1,xi+1, . . . ,xk ) the actions assigned to all other co-
operators in C . Similarly, for every non-cooperator j ∈ N and action tuple z ∈ Z we denote by
z−j = (z1, . . . , zj−1, zj+1, . . . , zn) the actions assigned to all other non-cooperators in N .

Moreover, each cooperating player i ∈ C is endowed with a payo� function ui : A → R and
non-cooperator j ∈ N is similarly endowed with a payo� function vj : A → R. We denote by
u = (u1, . . . ,uk ) the list of payo� functions over all cooperators and by v = (v1, . . . ,vn) the list of
payo� functions for all non-cooperators.

�e collective decisions of the coalition of cooperatorsC are guided by some aggregation of the
payo�s of its members (Negishi 1963). Formally, we introduce an aggregator as a function Λ : Rk →
R such that the coalition of cooperatorsC evaluates each action tuple a = (x ,y, z) ∈ A = X ×Y ×Z

through the aggregated payo� function U : A→ R de�ned by

U (a) = U (x ,y, z) = Λ (u1(x ,y, z), . . . ,uk (x ,y, z) ) . (2)

We say that the aggregator Λ is Paretian if it is non-decreasing in ui , i ∈ C . �roughout, we
refer to two common Paretian aggregators. �e Rawlsian aggregator is given by Λr (u1, . . . ,uk ) =

min{u1, . . . ,uk }, while the utilitarian aggregator is de�ned as Λu (u1, . . . ,uk ) =
∑k

i=1ui .
Clearly, the collective payo� functionU is founded on the aggregatorΛ and the payo� functions

u1, . . . ,uk of its members.

De�nition 2.1 A generalised partial cooperative game is a list Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉.

Note here as well that the case whereY is a singleton set reverts any generalised partial cooperative
game to a standard (k + n)-player normal form game.

2.1 Partial cooperative equilibrium

�is equilibrium notion extends Nash’s best response rationality to all decisions, namely the indi-
vidual and private actions of the players as well as the collective action of the coalition of cooper-
ators. �e la�er evaluates the outcomes of their selection through the aggregated payo� function
U based on the aggregator Λ.

1�is generalises Mallozzi and Tijs (2008a) and Chakrabarti et al. (2011), in which the set of collective actions, Y , is
modelled as a k-dimensional vector space with Y =

∏
i ∈C Yi . In this case, yi ∈ Yi denotes the individual player’s i ∈ C

strategic (sub-)action as part of the collective action y ∈ Y . In many applications it is additionally assumed that for every
cooperator i ∈ C the action set Yi is in fact some subset of a Euclidean space.
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De�nition 2.2 An action tuple a∗ = (x∗,y∗, z∗) ∈ A is called a partial cooperative equilibrium
in Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 if it satis�es the following conditions:

(i) For every cooperating player i ∈ C it holds that

ui (x
∗,y∗, z∗) > ui (xi ,x

∗
−i ,y

∗, z∗) (3)

for every private action xi ∈ Xi ;

(ii) For the coalition of cooperators C it holds that

U (x∗,y∗, z∗) > U (x∗,y, z∗) (4)

for every collective action y ∈ Y , whereU is given by (2);

(iii) And for every non-cooperator j ∈ N it holds that

vj (x
∗,y∗, z∗) > vj (x

∗,y∗, zj , z
∗
−j ) (5)

for every individual action zj ∈ Z j .

Next, we investigate the existence of partial cooperative equilibria in arbitrary generalised partial
cooperative games.

�eorem 2.3 Let Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 be a generalised partial cooperative game such that

(i) All action sets Xi (i ∈ C), Z j (j ∈ N ) and Y are compact and convex subsets of Euclidean
spaces;

(ii) �e payo� function ui is continuous on Xi × Y , quasi-concave on Xi and concave on Y for
every cooperator i ∈ C and the payo� function vj is continuous and quasi-concave on Z j for
every non-cooperator j ∈ N ,2 and;

(iii) �e aggregator Λ is continuous, Paretian and quasi-concave on Rk .

�en Γ admits at least one partial cooperative equilibrium.

For a proof of �eorem 2.3 we refer to the appendix of this paper.

2.2 Leadership equilibrium

Next we implement a sequential structure on the decision-making process in generalised partial
cooperative games. We consider an internal two-tier hierarchical structure in which the coalition
of cooperators C has a leadership position in the decision-making process. �us, in the �rst in-
stance C writes a binding agreement resulting in the selection of some collective action y ∈ Y and,
subsequently, all cooperators i ∈ C and all non-cooperating players j ∈ N respond to that selection
by selecting private actions xi ∈ Xi , respectively zj ∈ Z .

2Let A be convex. A function f : A → R is concave if if for all λ ∈ (0, 1) and a′,a′′ ∈ A : f (λ · a′ + (1 − λ) · a′′) >
λ · f (a′)+(1−λ)· f (a′′), and f is quasi-concave if for all λ ∈ (0, 1) and a′,a′′ ∈ A : f (λ ·a′+(1−λ)·a′′) > min{ f (a′), f (a′′)}.
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�e leadership equilibrium concept re�ects a standard backward induction logic in which the
coalition of cooperators C acts as a Stackelberg leader. �e coalition of cooperators C is assumed
to act from an optimistic point of view in this procedure and considers only outcomes from the
second-stage interaction between all agents that correspond to the best possible outcome for them
collectively.

In order to de�ne the leadership equilibrium concept properly, we have to introduce some hy-
potheses on the fundamentals.

Axiom 2.4 Consider a generalised partial cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉. We assume
that the following properties hold:

(i) For every i ∈ C it holds that Xi is a compact and convex subset of some Euclidean space;

(ii) For every j ∈ N it holds that Z j is a compact and convex subset of some Euclidean space;

(iii) �e set of collective actions Y is a compact subset of some Euclidean space;

(iv) For every cooperator i ∈ C , the payo� function ui : A → R is a continuous function and the
section ui (·,x−i ,y, z) : Xi → R is quasi-concave on Xi for all (x−i ,y, z) ∈ X−i × Y × Z ;

(v) For every non-cooperator j ∈ N , the payo� function vj : a → R is a continuous function and
the section vj (x ,y, ·, z−j ) is quasi-concave on Z j for all (x ,y, z−j ) ∈ X × Y × Z−j , and;

(vi) �e aggregator Λ is continuous on Rk .

�e assumptions introduced in Axiom 2.4 are weaker than the ones imposed in �eorem 2.3.
Under Axiom 2.4 we can now formulate some auxiliary notations that are required for the

de�nition of the leadership equilibrium concept. For any given collective action y ∈ Y we denote
by Γy = 〈C ∪ N ,X × Z ,wy〉 a standard normal form game given by player set C ∪ N and payo�
functions wy

i for all players in C ∪ N that are described as follows:

• First, for every cooperator i ∈ C we consider the conditional payo� functionw
y
i : X ×Z → R

given by

w
y
i (x , z) = ui (x ,y, z). (6)

• Second, for every non-cooperating player j ∈ N the given action setZ j as well as a conditional
payo� function w

y
j : X × Z → R de�ned as

w
y
j (x , z) = vj (x ,y, z). (7)

�e non-cooperative normal form game Γy = 〈C∪N ,X ×Z ,wy〉 is denoted as the conditional partial
cooperative game for the collective action y ∈ Y . �e set of Nash equilibria of the conditional game
Γy is now denoted by Ey ⊂ X × Z . Under the given hypotheses this de�nition is non-trivial:

Lemma 2.5 Consider a generalised partial cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 satisfying
Axiom 2.4. �en for every collective action y ∈ Y the set of Nash equilibria Ey of the conditional
partial cooperative game Γy = 〈C∪N ,X×Z ,wy〉 forms a non-empty, compact subset of the (Euclidean)
strategy set X × Z .
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Lemma 2.5 is an immediate corollary from the more general assertion stated as Lemma A.2 in the
appendix of this paper.

We postulate that the cooperators have an optimistic outlook on their abilities to gain from their
leadership position.3 Using the de�nition ofU given in (2) and the assumptions made in Axiom 2.4,
we let for every y ∈ Y ,

U s (y) = max
(x,z)∈Ey

U (x ,y, z) (8)

Φs = arg maxU s ≡

{
y ′ ∈ Y

����U s (y ′) = max
y∈Y

U s (y)

}
. (9)

�e function U s assigns the maximum payo� level to the coalition of cooperators C that can be
achieved when the cooperators as well as the non-cooperators do a best response in their respective
private and individual actions to all players’ actions.4

�e set Φs of U s -maximisers describes the best responses of the coalition of cooperators C

to the other players’ actions. Indeed, Φs is the collection of collective actions that maximise the
maximum payo� envelope function U s over Y , i.e., these collective actions are coalition C’s best
responses given the collective payo� function U s .

We can now de�ne the leadership equilibrium concept for Γ as follows:

De�nition 2.6 Let Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 be a generalised partial cooperative game that satis�es
Axiom 2.4. An action tuple (x?,y?, z?) ∈ A is a leadership equilibrium in Γ if y? ∈ Φs such that
Ey? , � and, furthermore, that

(x?, z?) ∈ arg max(x,z)∈Ey? U (x ,y
?, z). (10)

whereU is de�ned as in (2).

�e existence of a leadership equilibrium in a partial cooperative game can be established under
the assumed conditions.

�eorem 2.7 Let Γ = 〈C,N ,X ,Y ,Z ,u,v〉 be a generalised partial cooperative game that satis�es
Axiom 2.4. �en there exists at least one leadership equilibrium in Γ.

For a proof of �eorem 2.7 we again refer to the appendix.

2.3 Separability

A special class of generalised partial cooperative games is characterised by the separation of de-
cisions concerning, on the one hand, the collective actions (y) and, on the other hand, the pri-
vate (x ) as well as individual (z) actions. Formally, a generalised partial cooperative game Γ =

3We remark that this optimistic outlook can be replaced by other approaches such as a minimax logic or even a fully
pessimistic outlook.

4�ese concepts are indeed properly de�ned given the assumptions on ui , i ∈ C , and Λ stated in Axiom 2.4 and the
compactness of Ey from Lemma 2.5.
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〈C,N ,X ,Y ,Z ,u,v,Λ〉 is called separable if Λ = Λu is the utilitarian aggregator and for every i ∈ C

and (x ,y, z) ∈ X × Y × Z :

ui (x ,y, z) = ûi (x , z) + ũi (y) (11)

where ûi : X × Z → R and ũi : Y → R are partial payo� functions.
Separability guarantees that the two notions of equilibrium de�ned here for the class of gen-

eralised partial cooperative games coincide. Indeed, in a separable game the collective decision
of coalition C concerning the collective actions y is completely described by the maximisation of
Ũ =

∑
i ∈C ũi and, therefore, is strictly independent of the selection of individual actions of the

cooperators i ∈ C . �is implies immediately the following assertion.

Proposition 2.8 Let Γ be a separable generalised partial cooperative game satisfying Axiom 2.4. �en
the notion of leadership equilibrium is equivalent to that of the partial cooperative equilibrium concept
in Γ in the sense that every partial cooperative equilibrium is a leadership equilibrium.

In a separable partial cooperative game with multi-dimensional collective actions in the sense that
Y =

∏
i ∈C Yi for appropriately chosen Yi , one can also introduce the notion of a standard Nash

equilibrium. �is notion is rather useful in the analysis of the e�ects of collective decision making
on certain speci�ed actions.

De�nition 2.9 An action tuple (x ′,y ′, z ′) is a Nash equilibrium in a separable partial cooperative
game Γ with Y =

∏
i ∈C Yi if for every cooperator i ∈ C the pair (x ′i ,y

′
i ) maximises ui (·,x ′−i , ·,y

′
−i , z

′)

over Xi × Yi and for every non-cooperator j ∈ N the individual action z ′j maximises vj (x ′,y ′, ·, z ′−j )
over Z j .

In general, the class of Nash equilibria is di�erent from the class of Partial Cooperative and Lead-
ership equilibria in these separable games. �is is shown through the following example, which
considers a separable generalised partial cooperative game with two collaborators.

Example 2.10 Consider a separable partial cooperative game Γ with C = {1, 2} and N arbitrary.
We only specify the payo�s resulting from the collective actions and let

ũ1(y1,y2) = −(y1 − 1)2 + 2y2 − 3

ũ2(y1,y2) = 2y1 − 3 − (y2 − 1)2

�en in the Nash equilibrium for this game we have that y ′1 = y ′2 = 1 regardless of the payo�
functions and the strategies of all other players. On the other hand, in the partial cooperative
equilibrium (y1,y2) maximises

Ũ (y1,y2) = ũ1(y1,y2) + ũ2(y1,y2) = −(y1 − 2)2 − (y2 − 2)2.

�is implies that in the PCE we arrive at y∗1 = y
∗
2 = 2, again regardless of the actions of all other

players in the game. �

We re�ne the notion of separability further to arrive at some further conclusions concerning the
equivalence of Nash equilibria and the other equilibrium concepts. Speci�cally, a generalised partial
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cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 is called homogeneous if Γ is separable such that
Y =

∏
i ∈C Yi is multi-dimensional and for every cooperator i ∈ C and every action tuple (x ,y, z) ∈

X × Y × Z :

ui (x ,y, z) = ûi (x , z) + ũ(y) (12)

where ûi : X × Z → R and ũ : Y → R.
We can now state the following assertion without proof. A proof is based on the insight that the

determination of the collective action y ∈ Y =
∏

i ∈C Yi is not only completely separated from the
determination of the other actions (x , z) ∈ X ×Z , but that it is essentially based on the maximisation
of the common payo� function ũ. �us, the optimal collective action coincides with the individually
optimal choice of yi ∈ Yi for every cooperator i ∈ C .

Proposition 2.11 Let Γ be a homogeneous generalised partial cooperative game. �en the notion of
partial cooperative equilibrium is equivalent to that of Nash equilibrium in Γ in the sense that every
partial cooperative equilibrium is a Nash equilibrium.

3 Two applications

In this section we investigate two applications of generalised partial cooperative games that clearly
delineate the various equilibrium concepts. Both of these applications consider a generalised partial
cooperative game formulation that allows the development of a standard Nash equilibrium. Hence,
the concept of a standard Nash equilibrium is well-de�ned and can be computed. �us, a complete
comparison of these Nash equilibria with the two main partial cooperative equilibrium concepts—
partial cooperative equilibrium and leadership equilibrium—can be developed.

3.1 Cartels in multi-market oligopolies

We �rst consider a cartel in a multi-market oligopoly. Firms are fully competitive in one market,
while a subset of �rms forms a cartel in the second market only. We show that the cartel bene�ts
in comparison with the standard Nash equilibrium outcome if it has a clear leadership position: An
improvement only occurs in the leadership equilibrium, not in the partial cooperative equilibrium.

We limit our analysis to the case of three �rms indexed by i = 1, 2, 3 that compete in two related
markets A and B.5 We assume that these �rms engage in quantity-se�ing, Cournotian competition.
We denote by qi andQi the quantities sold by �rm i on marketsA and B, respectively. Furthermore,
p and P represent the market prices emerging in market A and B, respectively.

Focusing on the most interesting case, we suppose that competitors’ products are strategic
substitutes and there are diseconomies of scope across the two markets. More speci�cally, demand
in markets A and B for �rm i are respectively represented by

p = α −
m∑
i=1

qi and P = β −
m∑
i=1

Qi

5�roughout we use the notation of Billand et al. (2014).
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where α , β > 0 are demand parameters describing the total market size for each of the two goods
A and B.

We assume a well-established, widely adopted production technology imposing a simple, iden-
tical quadratic cost function on the three �rms, given by

C(q,Q) = 1
2 (q +Q)

2 (13)

�erefore, the pro�t of �rm i is determined as

πi = p · qi + P ·Qi −C(qi ,Qi ) = p · qi + P ·Qi −
1
2 (q +Q)

2. (14)

It can be shown that in this linear quadratic formulation, the resulting second order conditions are
always satis�ed if α and β are not too di�erent. Hence, one obtains a unique interior maximum
through the �rst order conditions.

Formulation as a generalised partial cooperative game. We set up a generalised partial co-
operative game that describes cartel formation in this multi-market Cournot oligopoly. We consider
the formation of the cartelC = {1, 2} only in market B, while full competition is retained in market
A. Here, �rm 3 remains an independent producer.6

In this multi-market framework, y = (Q1,Q2) forms the collective action of the cartelC = {1, 2},
while quantities (q1,q2) set in the A-market constitute private actions for the two cartel members
i = 1, 2. Firm 3 acts completely independently in both markets and set all output levels (q3,Q3) as
individual actions.

�e generalised partial cooperative game is completed with the selection of the utilitarian ag-
gregator Λu (π1,π2) = π1 + π2 to direct the collective decisions of the cartel C = {1, 2}.7

Equilibrium analysis

In this se�ing, we discuss the Nash equilibrium, the partial cooperative equilibrium and the lead-
ership equilibrium in this model of cartel formation in a multi-market oligopoly.

We take Nash equilibrium as a benchmark with respect to which we compare the results of the
two partial cooperative analysis. If all three �rms act competitively and (qi ,Qi ), i = 1, 2, 3, are set
independently, then a straightforward analysis shows that a unique symmetric Nash equilibrium
exists if α

5 < β < 5α . �is equilibrium is given by

qNE
1 = qNE

2 = qNE
3 =

5α − β
24

≡ qNE

QNE
1 = QNE

2 = QNE
3 =

5β − α
24

≡ QNE .

6We remark that our analysis can be extended to an arbitrary number of competitors and cartel members. �is gen-
eralization, however, leads to rather cumbersome expressions that add rather li�le to the conclusions from our analysis.
�e case for any number of competitors is available upon request from the authors.

7We mention here that replacing the utilitarians aggregator by the Rawlsian aggregator Λr = min{π1,π2} would not
a�ect the analysis of this particular application. In particular, this is due to the symmetry of the described situation.
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In the symmetric Nash equilibria all �rms earn equal pro�ts:

πNE
1 = πNE

2 = πNE
3 =

17α2 + 17β2 − 2αβ
288

≡ πNE

Partial cooperative and leadership equilibria: Next, we investigate the partial cooperative
and leadership equilibria in this generalised partial cooperative game.

Proposition 3.1 Given a multi-sided oligopoly with �rm pro�t functions given by (14), then

• A Partial cooperative equilibrium exists and is unique if α5 < β < 5α and is given by

qPE1 = qPE2 =
20α − 2β

98
; qPE3 =

21α − 7β
98

;

QPE
1 = QPE

2 =
15β − 3α

98
; QPE

3 =
25β − 5α

98
;

• A unique leadership equilibrium exists and is given by

qLE1 = q
LE
2 =

205α − 37β
968

; qLE3 =
197α − 45β

968
;

QLE
1 = Q

LE
2 =

193β − 49α
968

; QLE
3 =

19β − 3α
88

.

Deriving the above results involves straightforward albeit tedious calculations and thus are not
presented here.8 We compute that

π PE
1 = π PE

2 =
1125α2 + 1077β2 − 78αβ

19208
and π PE

3 =
1188α2 + 1672β2 − 512αβ

19208

for the partial equilibrium case, and

π LE
1 = π LE

2 =
229α2 + 229β2 − 26αβ

3872
and π LE

3 =
26673α2 + 29557β2 − 2314αβ

468512
.

for the leadership equilibrium.
For i = 1, 2 we conclude that

π LE
i > max

{
π PE
i ,π

NE
i

}
. (15)

We can now also investigate whether the merger paradox, seminally stated for Cournot competition
in Salant et al. (1983) emerges in any of these environments. �e merger paradox would occur if
cartel formation in this multi-market se�ing results into losses to its members. Clearly, (15) implies
that there are no grounds for merger paradox to emerge if the cartel obtains a leadership position in
the multi-market oligopoly, and, that instead there may be market conditions that make it a feature
of the partial cooperative equilibrium when π PE

i < πNE
i for the cartel members i = 1, 2. Here,

that is the case for β > 317
409α ≈ 0.775α . �us, the merger paradox occurs if market B is su�ciently

larger than the competitive market A. On the other hand, forming a cartel on a relatively smaller
8Detailed derivations are available from the authors upon request.
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market may result in a strict Pareto improvement. We compute that this is particularly the case for
1951
3875α < β <

317
409α .

We can illustrate this point more clearly by presenting the equilibrium outcome for speci�c
values of the market parameters. For example, if α = 5 and β = 3, we arrive at π PE

1 = π PE
2 =

1.9080 > πNE = 1.9028 as well as π PE
3 = 1.9298 > πNE = 1.9028. Here, a leadership role improves

the pro�t position for the cartel, although the independent producer �rm 3 still outperforms its
competitors. To be precise, we compute that π LE

1 = π LE
2 = 1.9101 > π PE

1 = π PE
2 > πNE , while

π PE
3 > π LE

3 = 1.9170 > πNE .

3.2 International pollution abatement

Our second application concerns an international environmental protection situation in which cer-
tain countries write an international pollution abatement treaty, while other countries do not partic-
ipate in such a collective control of their emissions. Our analysis builds on the seminal contribution
by Chander and Tulkens (1997) who for the purpose of their analysis developed the notion of the
γ -core for partition function form games. We remark here that their notion of partial agreement
equilibrium corresponds to our notion of partial cooperative equilibrium.

We amend their analysis by supplementing the cooperators’ strategy space with an additional
dimension along which binding agreements and cooperation are not possible. So, we include
an input factor—denoted as labour—that treaty countries choose independently, similarly to non-
cooperators.

�ere are two types of countries, namely those that cooperate on writing an international emis-
sions control treaty—denoted by C = {1, . . . ,k} with k > 2—and those that act independently—
denoted by N = {1, . . . ,n} with n > 1. All countries produce two non-tradable goods, 1 and 2,
only. Treaty country i ∈ C produces and consumes quantities q1i and q2i , while non-treaty country
j ∈ N produces and consumes q1j and q2j , respectively.

Good 1 is “clean” in the sense that its production leaves no emissions footprint. Good 2 is
“dirty” in the sense that its production requires an input that leaves an emissions footprint. For all
countries the production technology is the same. For generic country h ∈ C ∪ N the production
functions for the two goods are given by q1h =

√
L1h and q2h =

√
dhL2h , where L1h > 0 and L2h > 0

are, respectively, the amounts of labour expended in the production of goods 1 and 2 and dh > 0 is
the “dirty input” in the production of good 2.

We further assume that every country h ∈ C ∪ N is endowed with the same total labour input
equal to L. �us, L1h + L2h ≤ L. �roughout we assume that L > 1.

�e utility function of a representative consumer of country h ∈ C ∪ N is now given by

uh(q1h ,q2h ,∆) = q1h + q2h −
1
2∆ (16)
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with

∆ =

k∑
i=1

di +
n∑
j=1

dj (17)

q1h =
√
L1h (18)

q2h =
√
dhL2h (19)

L1h + L2h 6 L (20)

Here, ∆ represents the emissions associated with the production of good 2 across the global com-
munity.9 Note that this payo� function is separable in the production variables (q1h ,q2h) on the one
hand and the emission decisions {dh}h∈C∪N on the other. �is implies that the generalised partial
cooperative game considered here is separable and Proposition 2.8 applies.

In terms of the notation employed, y = (d1, . . . ,dk ) is the multi-dimensional collective action
of all treaty countries in C , representing the treaty wri�en between the countries in C to control
emissions. �roughout, we postulate that the coalition of treaty countriesC is guided by utilitarian
principles and uses the utilitarian aggregator Λu =

∑
i ∈C ui to guide its collective decisions.

Equilibrium analysis

We can approach this model as a normal form strategic game as well as a generalised partial coop-
erative game. We �rst determine its Nash equilibrium that we use as a benchmark. �is represents
a situation in which all countries in C act independently and do not write a treaty to control their
emissions. �is results into a standard tragedy of the commons problem which given by the max-
imisation of the objective function (16) subject to the constraints listed in (17)–(20).

Indeed, in the Nash equilibrium for each country h ∈ C ∪ N we derive that LNE
1h = 1 and

LNE
2h = d

NE
h = L − 1, resulting into uNE

h = L − 1
2 (k + n)(L − 1).10

Partial cooperative and leadership equilibria: First, note that the formulated generalised par-
tial cooperative game is separable and that Proposition 2.8 now implies that the partial cooperative
equilibria are equal to the leadership equilibria in this model. We, therefore, limit our discussion to
the partial cooperative equilibria only.

In the case of cooperation, the coalition of treaty countries C signs a binding agreement y =
(d1, . . . ,dk ) and each countryh ∈ C∪N chooses independently the amount of labour that it allocates
to the production of each of the two goods (L1h ,L2h). Moreover, each non-treaty country j ∈ N

makes a decision on the dirty input dj .
�e coalition of treaty countries C determines y = (d1, . . . ,dk ) by solving to the following

9To bring to the fore the mechanism of partial cooperation, we take countries to be completely homogeneous and
goods to be non-tradable. As a consequence, all countries remain in a state of autarky.

10Obviously,uNE < 0 if the total number of countries k+n > 3 (> 4) and the total in-country labour input L > 3 (> 2).
In that case, the negative impact of pollution overtakes the positive utility from the consumption of the two goods.
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maximisation problem:

max
d1, ...,dk

∑
i ∈C

(√
L − L2i +

√
diL2i −

1
2

(
k∑
i=1

di +
n∑
j=1

dj

))

�is yields that for every i ∈ C : di =
L2i

k2 . �is now results in the following conclusions:11

Proposition 3.2 �ere are two cases for which a complete description of the partial cooperative equi-
librium of the pollution abatement model can be determined:

(a) 1 < L 6 k2 :
For each treaty country i ∈ C : LPE1i = L and LPE2i = dPEi = 0. For each independent country
i ∈ N : LPE1j = 1 and LPE2j = d

PE
j = L − 1.

�e total pollution in this equilibrium is determined as ∆PE = n(L− 1) and the resulting utility
levels as

uPEi =
√
L − n

2 (L − 1)

uPEj =
(
1 − n

2
)
L + n

2

For all 1 < L 6 k2, the partial cooperative equilibrium is a strict Pareto improvement over the
Nash equilibrium.

(b) L > k2 :
For each treaty country i ∈ C : LPE1i = k

2, LPE2i = L − k2 and dPEi =
L−k2

k2 . For each independent
country i ∈ N : LPE1j = 1 and LPE2j = d

PE
j = L − 1.

�e total pollution in this equilibrium is determined as

∆PE =
(
n + 1

k

)
L − (k + n)

and the resulting utility levels as

uPEi =
L − k2

k
+ 1

2 (3k + n) −
1
2
(
n + 1

k

)
L

uPEj = L − 1
2
(
n + 1

k

)
L + 1

2 (k + n)

For any L > k2 the partial cooperative equilibrium is a strict Pareto improvement over the Nash
equilibrium.

�e conclusion from Proposition 3.2 is that treaty countries as well as independent countries are
be�er-o� under pollution abatement treaties than under global non-collaboration as described in
the Nash equilibrium. Although in Nash equilibrium, all countries achieve the same utility levels,
under partial cooperation, the independent countries have a higher utility than the cooperators,
since they act as free-riders, enjoying the environmental pollution abatement imposed through the

11�e computations and derivations are rather tedious and therefore relegated to the appendix of this paper.
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treaty. As expected, total pollution always increases with the number of independent countries. An
increase in the number of treaty countries, on the other hand, decreases total pollution.

4 Concluding remarks

In this paper we introduce two equilibrium notions that are applicable to situations of partial co-
operation. We establish their existence properties in a general and widely applicable se�ing.

First, as our concept of partial cooperative equilibrium builds on the standard notion of Nash
equilibrium, it is neutral to the assumption of observability of players’ strategies, including the
existence and composition of the coalition of cooperators.

Second, even though our results are derived in the context of a single group of cooperators, our
results on the partial cooperative equilibrium concept are generalisable to a se�ing with an arbitrary
number of exclusive coalitions of cooperators. For a partial cooperative equilibrium to exist in such
more general se�ings, the conditions on the aggregator function identi�ed in �eorems 2.3 must
apply to all coalitions of cooperators.

In the context of leadership in partial cooperation, we present our results under the assumption
that the cooperators have a leadership role. A similar existence result can be derived if, instead,
one of the non-cooperators acts as the Stackelberg leader. To see that, it is su�cient to recognise
that once the �rst mover takes action, the players that are moving next are de facto in a situation
of partial cooperation, where the existence of a �xed point is established in �eorem 2.3.

Finally, we point out the role of complete information in our set up. Here as in the standard
Nash Equilibrium analysis we take complete information to implicitly imply common knowledge
of payo�s. In the context of leadership equilibrium, we make an implicit requirement that the
collective action is observable by all players, too.

Possible extensions of our analysis. Despite its robustness, we acknowledge that our analysis
is restrictive in the sense that cooperation between the coalition members is ex-ante postulated and
binding. In this respect, our work is complementary to the large literature on the endogenous for-
mation of agreements based on the work of Ichiishi (1981), Bloch (1997), and Yi (1997).12 Whereas
the focus of this literature is on the existence and stability of a stable coalition structure given a
payo� allocation, our contribution is on the equilibrium derivation of payo�s in a strategic envi-
ronment taking the coalition structure as given. While in these contexts the existence of equilibria
is not an issue, our contribution guides future research on the entire class of games where equilib-
rium existence is guaranteed by deriving very general conditions on the payo� functions. Clearly,
further e�ort is needed in the direction of studying the general properties of the simultaneous game
of coalition formation and partial cooperation.

In the context of the two speci�c applications developed here, an indication of coalition stability
can be derived from the comparison between the partial equilibrium payo�s and those in the Nash
Equilibrium. If one takes Nash equilibrium to be resulting when cooperation breaks down, then
conditions under which partial (leadership) equilibrium payo�s for the cooperators are higher are
suggestive of the range of conditions necessary to sustain cooperative agreements.

12For an overview of this literature, we refer to Finus and Rundshagen (2009).
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�e two applications discussed also underline both the signi�cance and the relevance of the
equilibrium notions based on partial cooperation. In particular, in our �rst application we embed a
standard framework of multi-market oligopolistic competition into our analysis of partial coopera-
tion. By doing so, we generalise the analysis in existing studies—e.g. Bernheim and Whinston (1990)
and more recently Choi and Gerlach (2013)—that analyse the pro�tability of cartels in multi-market
context. In this literature, cartels are of limited size and occur in the absence of outside competitive
pressures. Our analysis suggests that when �rms meet on two markets, cartels are more likely to be
stable on the relatively smaller market, or where the cartel can take a leadership position relative
to non-cartel members. To the best of our knowledge we are the �rst to point out the advantages
that cartels a�ain in multi-market oligopolies in the context of sequential decision making.

Our second application concerning environmental agreements draws out the role of separabil-
ity in the analysis. As discussed in the introduction, partial cooperation in this context has been
studied since the 1990s. �e main conclusion of our analysis—that payo�s for the signatories are
equal under partial cooperative equilibrium and under leadership equilibrium—point to the fact that
arguments that a success of partial cooperation is dependent on taking a �rst-mover advantage are
not always justi�able.
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A Appendix: Proofs of theorems and propositions

�is appendix collects the proofs of the main existence theorems presented in Section 2 of this
paper.

A.1 Proof of �eorem 2.3

For every cooperator i ∈ C , we de�ne her best response correspondence as a mapping γi : X−i ×Y ×
Z → 2Xi given by

γi (x−i ,y, z) = arg max
xi ∈Xi

ui (xi ,x−i ,y, z) (21)

for any (x−i ,y, z) ∈ X−i × Y × Z .
Similarly, for the coalition of cooperators C itself, we de�ne the collective best response corre-

spondence δ : X × Z → 2Y by

δ (x , z) = arg max
y∈Y

U (x ,y, z) (22)

for any (x , z) ∈ X × Z , where U is the aggregated payo� function for C de�ned in (2).
Furthermore, for every non-cooperator j ∈ N , we de�ne her best response correspondence

εj : X × Y × Z−j → 2Z j by

εj (x ,y, z−j ) = arg max
zj ∈Z j

vj (x ,y, zj , z−j ) (23)

for any (x ,y, z−j ) ∈ X × Y × Z−j .
�is allows us to introduce the joint best response correspondence B : A → 2A such that for

any â = (x̂ , ŷ, ẑ) ∈ A,

B (â) =
(x ,y, z) ∈ A

������ xi ∈ γi (x̂−i , ŷ, ẑ) for all i ∈ C,
y ∈ δ (x̂ , ẑ), and
zj ∈ εj (x̂ , ŷ, ẑ−j ) for all j ∈ N

 . (24)

It is clear that a �xed point of this best response correspondence—de�ned as some a? ∈ A such that
a? ∈ B(a?)—corresponds to a partial cooperative equilibrium of the generalised partial cooperative
game Γ.

We proceed by showing that B indeed possesses such a �xed point.
First, we show that the best response correspondences γi (i ∈ C), δ , and εj (j ∈ N ) are all non-empty
valued.
Given thatXi is compact andui continuous onXi , for every i ∈ C , applying the Weierstrass �eorem
implies that ui indeed admits a maximum and, thus, γi (x−i ,y, z) , � for all a = (x ,y, z) ∈ A where
i ∈ C .
Next, since the aggregator Λ is continuous and all ui , i ∈ C , are continuous on Y , it follows that U
is continuous on Y as well. From compactness of Y , it follows that δ is therefore non-empty valued.
Finally, the compactness of Z j and continuity ofvj on Z j , for all j ∈ N , implies that εj is non-empty
valued as well for all j ∈ N .
�erefore, combining these facts it follows that B is a non-empty valued correspondence.

Next, we show that B is convex valued.
First we claim that each of the correspondences γi (i ∈ C), δ , and εj (j ∈ N ) are convex-valued. To
see this, consider γi for some i ∈ C . For any (x−i ,y, z) ∈ X−i ×Y ×Z , γi (x−i ,y, z) is the set of maxima
of the quasi-concave function ui (·,x−i ,y, z) mapped onto the convex set Xi . Hence, γi (x−i ,y, z) is

17



indeed a convex set.
Similar arguments can be used to show that for any (x ,y, z−j ) ∈ X × Y × Z−j , the set εj (x ,y, z−j ) is
convex.
Finally, consider δ . Since Λ is Paretian and quasi-concave, it aggregates quasi-concave utility func-
tions in a quasi-concave function.13 �erefore, U is quasi-concave on Y .
Furthermore, for every (x , z) ∈ X × Z , δ (x , z) is the set of maxima of the quasi-concave function
U (x , ·, z) mapped on a convex set Y , implying that δ (x , z) is indeed convex.
�is implies that B is indeed convex valued.

Finally, we prove B is upper hemi-continuous.
Consider a sequence âp = (x̂p , ŷp , ẑp ) converging to some â = (x̂ , ŷ, ẑ), as well as a sequence ãp =
(x̃p , ỹp , z̃p ) converging to some ã = (x̃ , ỹ, z̃) such that (x̃p , ỹp , z̃p ) ∈ B(x̂p , ŷp , ẑp ) for all p ∈ N. We
now prove that (x̃ , ỹ, z̃) ∈ B(x̂ , ŷ, ẑ), implying that the correspondence B is closed and, thus, since
A is compact, it follows that B is indeed upper hemi-continuous.
By de�nition it follows for all i ∈ C that for every xi ∈ Xi :

ui (x̃p,i , x̂p,−i , ŷp , ẑp ) − ui (xi , x̂p,−i , ŷp , ẑp ) > 0 (25)

For every y ∈ Y :

U (x̂p , ỹp , ẑp ) −U (x̂p ,y, ẑp ) > 0 (26)

Finally, for every j ∈ N and all zj ∈ Z j :

vj (x̂p , ŷp , z̃p, j , ẑp,−j ) −vj (x̂p , ŷp , zj , ẑp,−j ) > 0 (27)

From these conclusions it follows immediately that

ui (x̃i , x̂−i , ŷ, ẑ) − ui (xi , x̂−i , ŷ, ẑ) > 0 for every i ∈ C and xi ∈ Xi ; (28)
U (x̂ , ỹ, ẑ) −U (x̂ ,y, ẑ) > 0 for every y ∈ Y ; (29)

vj (x̂ , ŷ, z̃j , ẑ−j ) −vj (x̂ , ŷ, zj , ẑ−j ) > 0 for every j ∈ N and zj ∈ Z j (30)

�is proves that (x̃ , ỹ, z̃) ∈ B(x̂ , ŷ, ẑ).

Hence, we conclude that the correspondence B : A → 2A is a convex-valued and upper hemi-
continuous correspondence. From Kakutani’s �xed point theorem (Border 1985, page 72), it can be
concluded that B admits a �xed point and, hence, a partial cooperative equilibrium exists for the
generalised partial cooperative game Γ.

A.2 Proof of �eorem 2.7

�e proof of �eorem 2.7 is based on Berge’s �eorem. For completeness we state this fundamental
result here.

Lemma A.1 (Berge 1997, page 115)
Let M and N be two Euclidean spaces and let D : M → 2N be a non-empty and compact valued
correspondence and f : M × N → R be a upper semi-continuous function. De�ne the value function
V : M → R by

V (m) = sup { f (n,m) | n ∈ D(m)}.

If D is upper hemi-continuous atm ∈ M , then the value function V is upper semi-continuous atm.

13We refer to Negishi (1963, Proposition 1) for a concise proof of this result.
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Next consider a generalised partial cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉. First we de�ne
the Nash correspondence which is equal to the feasibility correspondence E de�ned in Section 2
of the paper. Formally, we introduce the mapping E : Y → 2X×Z by E(y) = Ey for every collective
action y ∈ Y . We show that under standard assumptions, this correspondence is non-empty and
compact valued as well as upper hemi-continuous.

Lemma A.2 Let for the generalised partial cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v〉, Xi be a com-
pact and convex subset of some Euclidean space for every cooperator i ∈ C and Z j be a compact and
convex subset of some Euclidean space for every non-cooperator j ∈ N . Assume that X , Y , and Z are
all non-empty.
Let for all i ∈ C , ui : A → R be a continuous function and ui (·,x−i ,y, z) : Xi → R be quasi-concave
for all (x−i ,y, z) ∈ X−i × Y × Z . Furthermore, let for all j ∈ N , vj : A → R be a continuous function
and vj (x ,y, ·, z−j ) be quasi-concave for all (x ,y, z−j ) ∈ X × Y × Z−j .
�en the correspondence E : Y → 2X×Z is non-empty and compact valued as well as upper hemi-
continuous.

Proof. For an arbitrary collective action y ∈ Y , consider the reduced normal form game Γy =
〈C ∪ N ,X × Z ,w〉 as given before. Assume that Xi is a compact and convex subset of a Euclidean
space for each i ∈ C and Z j is a compact and convex subset of a Euclidean space for all j ∈ N .
For any i ∈ C , the function w

y
i is equal to a section of ui and, hence, by assumption its section

w
y
i (·,x−i , z) is quasi-concave on Xi .

For any j ∈ N , the function w
y
j is equal to a section of vj and, consequentially, by assumption its

section w
y
j (x , ·, z−j ) is quasi-concave on Z j .

Moreover, both w
y
i (i ∈ C) and w

y
j (j ∈ N ) are continuous on X × Z .

Hence, we conclude that the game Γy = 〈C ∪N ,X ×Z ,w〉 satis�es all conditions of a standard Nash
equilibrium existence theorem (Fudenberg and Tirole 1991, page 34) and, therefore, admits a Nash
equilibrium. �us, Ey , � for all y ∈ Y implying that E : Y → 2X×Z is non-empty valued.

Next, we show that the correspondence E is closed, and since X × Z is compact, E is upper hemi-
continuous as well. Consider a convergent sequence ŷp → ŷ and a convergent sequence (x̂p , ẑp ) →
(x̂ , ẑ) such that (x̂p , ẑp ) ∈ E(ŷp ). We prove that (x̂ , ẑ) ∈ E(ŷ).
Indeed, by de�nition, for all i ∈ C , we have wy

i (x̂p,i , x̂p,−i , ẑp ) −w
y
i (xi , x̂p,−i , ẑp ) > 0 for all xi ∈ Xi .

Similarly, for all j ∈ N ,wy
j (x̂p , ẑp, j , ẑp,−j )−w

y
j (x̂p , zj , ẑp,−j ) > 0 for all zj ∈ Z j . It follows immediately

that bothw
y
i (·, ·, ·) −w

y
i (xi , ·, ·) : Xi ×X−i ×Z → R andwy

j (·, ·, ·) −w
y
j (·, zj , ·) : X ×Z j ×Z−j → R are

continuous functions. Hence, for every i ∈ C , we have that wy
i (x̂i , x̂−i , ẑ) −w

y
i (xi , x̂−i , ẑ) > 0 and,

for all j ∈ N , we havewy
j (x̂ , ẑj , ẑ−j ) −w

y
j (x̂ , zj , ẑ−j ) > 0. �is implies (x̂ , ẑ) ∈ E(ŷ). �us, E is indeed

a closed correspondence.

Finally, take any y ∈ Y . We show that E(y) is compact. Since E is a closed correspondence, it is,
therefore, closed-valued. Hence, E(y) is a closed subset of a compact set X × Z and, thus, E(y) is
compact.

Next, consider the function U s : Y → R as de�ned in (8). From the continuity of Λ and ui for
each i ∈ C , we conclude that U is continuous on A. Since, from Lemma A.2, the set Ey is compact
for all y ∈ Y , it then follows that arg max(x,y)∈Ey U (x ,y, z) exists for every y ∈ Y . Hence, U s is a
well-de�ned function. It remains to show that U s is an upper semi-continuous function.

Lemma A.3 Let the generalised partial cooperative game Γ = 〈C,N ,X ,Y ,Z ,u,v,Λ〉 satisfy the re-
quirements of �eorem 2.7. �en the indirect utility functionU s is upper semi-continuous.

Proof. In Lemma A.1, we make the substitutions, M = Y , N = X × Z , D = E and f = U . We have
proven in Lemma A.2 that E is indeed upper hemi-continuous as well as non-empty and compact
valued. Furthermore, by construction, the utility functionU is continuous and, thus, f = U is upper
semi-continuous.
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Finally, we can see that from Berge’s formulation thatV = U s by construction. By applying Lemma
A.1, we conclude that U s is upper semi-continuous.

We are now in the position to complete the proof of �eorem 2.7.
From Lemma A.3, U s : Y → R is an upper semi-continuous function de�ned on a compact set Y .
Hence, it follows from standard results that Φs is non-empty.
Take anyy∗ ∈ Φs . From Lemma A.2, Ey∗ is non-empty as well as compact. Moreover,U (·,y∗, ·) : X×
Z → R is a continuous function. Hence, from the Weierstrass �eorem,

Ψ = arg max
(x,z)∈Ey∗

U (x ,y∗, z) , �.

Take any (x∗, z∗) ∈ Ψ. �en it is easy to establish that (x∗,y∗, z∗) constitutes a leadership equilibrium
in the generalised partial cooperative game Γ.
�is completes the proof of �eorem 2.7.

A.3 Proof of Proposition 3.2

We proceed by straightforwardly compute the �rst order conditions from the optimisation problems
for the treaty countries i ∈ C , the independent countries j ∈ N and forC as a collective. First, notice
that without loss of generality, we can replace the inequality in (20) by an equality and re-write the
constrained maximisation problem given by Equations (16)-(20) as a straightforward maximisation
of a single function with two variables given by

max
L2h,dh

uh =

√
L − L2h +

√
dhL2h −

1
2

(
k∑
i=1

di +
n∑
j=1

dj

)
. (31)

�e �rst order conditions of (31) are given by:

∂uh
∂L2h

= −
1

2
√
L − L2h

+
dh

2
√
dhL2h

≡ 0 (32)

∂uh
∂dh

=
L2h

2
√
dhL2h

− 1
2 ≡ 0. (33)

We re-call that we already established that for the treaty countries i ∈ C , the equilibrium level of
individual country emissions is given by

di =
L2i

k2 ,

which through substitution in (32) implies that

1

2
√
L − L2i

= 1
2k

We �rst show assertion (b) for L > k2. Hence, LPE2i = L − k2 > 0 and dPEi = L−k2

k2 . In turn, we then
establish that LPE1i = L − L2i = k

2.
�e �rst order conditions for the independent countries j ∈ N now imply the computed outcomes
for the Nash equilibrium, i.e., LPE1j = 1 and LPE2j = d

PE
j = L − 1.
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�erefore,

∆PE = k

(
L − k2

k2

)
+ n

(
L − 1

)
= (n + 1

k )L − (k + n).

�is implies now that

uPEi = k +
L − k2

k
− 1

2 (n +
1
k )L +

1
2 (k + n) =

= 1
2 (k + n) −

1
2
(
n − 1

k

)
L

uPEj = L − 1
2
(
n + 1

k

)
L + 1

2 (k + n).

Now since ∆PE < ∆NE we derive immediately that for every j ∈ N : uPEj > uNE
j . Furthermore, for

i ∈ C it holds that uPEi > uNE
i if and only if

L − k2

k
+ 1

2 (3k + n) −
1
2 (n +

1
k )L > L − 1

2 (k + n)L +
1
2 (k + n)

if and only if

L >
(
1 − k

2 +
1

2k

)
k L.

Obviously, L > 0, so the inequality simpli�es to(
1 − k

2 +
1

2k

)
k < 1 or (k − 1)2 > 0.

�is is obviously the case for any value of k in the assumed range k > 2, showing assertion (b).

Next we show assertion (a) for 1 < L 6 k2.
In that case there is a corner solution for the equilibrium conditions described by dPEi = LPE2i = 0
and LPE1i = L for the treaty countries i ∈ C .
For the independent countries j ∈ N we derive again LPE1j = 1 and LPE2j = d

PE
j = L − 1.

�us, ∆PE = n(L − 1) and

uPEi =
√
L − n

2 (L − 1) and uPEj = L − n
2 (L − 1) =

(
1 − n

2
)
L + n

2

To investigate the Pareto domination between the PE and the NE outcomes, we note again that
uPEj > uNE

j as L > 1 and now uPEi > uNE
i if and only if√

L − n
2 (L − 1) > L − 1

2 (k + n)(L − 1)

if and only if√
L > L − k

2

(
L − 1

)
if and only if

2
√
L > k − (k − 2)L.
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Now L > 1 and k > 2 imply that

2
√
L > 2 > k − (k − 2)L.

Hence, uPEi > uNE
i , thus con�rming the assertion of (a) in Proposition 3.2.
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