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1 Mutual consent in network formation

During the past two decades there has emerged an extensive literature on game theoretic models of

network formation. Seminally, the fundamentals of such a game theoretic perspective were set out

by Aumann and Myerson (1988) in which players are guided by the Myerson value of corresponding

communication situations. �is contribution explored network formation under mutual consent

through a non-cooperative signalling game: A link between two players is formed if and only if

both players signal to each other their willingness to form this relationship. �e main insight of the

Myerson model (Myerson, 1991) is that the network without any links is always supported through

a Nash equilibrium of this signalling game. �is theoretical result leads to the conclusion that

network formation under mutual consent has to be considered as di�cult, even impossible. �is

would contradict the well-established understanding of human nature as that of a social networker

(Seabright, 2010; Harari, 2014).
1

Nevertheless, paradoxically, the Myerson model is and remains the

most natural, straightforward and convincing non-cooperative model of network formation under

mutual consent.

�e relative failure of this natural non-cooperative approach induced Jackson and Wolinsky (1996)

to introduce an alternative approach, which is founded on a bilateral cooperative consideration.
2

In their approach, Jackson and Wolinsky allow pairs of players to cooperatively deviate from an
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�e main conclusion is strengthened in the case of costly link formation, in which the empty network is a strong

Nash equilibrium, indicating that starting from an empty network it seems unlikely that rational agents would be able to

establish non-trivial networks. I also refer to Joshi, Mahmut, and Sarangi (2020) for a dynamic model of such non-trivial

network formation.

2
An alternative mathematical model emerged with Bala and Goyal (2000) based on one-sided link formation: One

assumes ex-ante, or implicit, consent among players in the network formation game. �e resulting equilibrium networks

are denoted as Nash networks in the subsequently developed literature. �is approach is unsatisfactory due to its unnatural

social foundations with rather limited applicability to explain social and economic phenomena.
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existing network to modify it. �e equilibrium networks under such pairwise modi�cation are

denoted as pairwise stable networks. Pairwise stability provided a fertile foundation for further

exploration of network formation under cooperative consent. �is resulted in the development and

study of variations of pairwise stability.

Although the Jackson-Wolinsky approach founded on pairwise stability has been very successful

in explaining the emergence of non-trivial networks, there remained a gap in our understanding

concerning a purely non-cooperative approach to the modelling of mutual consent in network

formation. �is has been more recently explored through the design of bespoke equilibrium concept

applied in the Myerson model. In particular, van de Rijt and Buskens (2008) and Gilles and Sarangi

(2010) introduced models of trusting behaviour in network formation through trust-based belief

systems. �e equilibrium concepts that are developed from these models have very strong properties,

showing that trust in network formation leads to non-trivial equilibrium networks. For example,

Gilles and Sarangi (2010)’s notion of monadic stability results in equilibrium networks that form a

speci�c subclass of pairwise stable networks—denoted as the strictly pairwise stable networks.

Overview of this survey. �is survey explores the various methodologies to properly model

mutual consent in network formation. I compare the di�erent classes of equilibrium networks that

emerge from these di�erent methodologies. A�er discussing the principles of link formation under

mutual consent and Myerson’s seminal model, I turn to the exploration of Jackson-Wolinsky type

stability concepts based on pairwise cooperative behaviour. I distinguish di�erent subclasses of

stable network based on hypotheses about how coalitions of certain sizes can modify the current

network. �is mainly pertains to pairs of players, but also extends to coalitions of players of arbitrary

size—resulting in the notion of a strongly stable network (Jackson and van den Nouweland, 2005).

Subsequently, I turn to the main non-cooperative theory of network formation under mutual

consent, namely extensions of the Myerson model (Myerson, 1991). I survey the results from the

literature that categorise the various classes of equilibrium networks in the Myerson model with

two- as well as one-sided link formation costs. �ere emerges a close link to certain classes of stable

networks in the Jackson-Wolinsky framework.

Subsequently, I discuss the idea of equilibrium re�nement in the Myerson model to re�ect

considerations of mutual trust in link formation. Indeed, links are representations of socio-economic

relationships that are founded on mutual trust between the interacting parties. �is results in the

unilateral (van de Rijt and Buskens, 2008) and monadic stability (Gilles and Sarangi, 2010) concepts in

the Myerson model. I explore monadic stability further, which is founded on a conception of mutual

trust through a belief system in the Myerson model. �e properties of these monadically stable

networks as well as their existence, using Monderer and Shapley (1996)’s theory of game-theoretic

potentials, are also reviewed.

I conclude this survey by looking at an alternative method to modelling mutual consent in

link- and network formation. �is refers to the introduction of correlated strategies in the Myerson

model as a tool to represent coordinated interaction. �e resulting class of “correlated equilibrium

networks” still needs to be explored in future research.
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2 Introducing mutual consent: Modelling principles

�roughout this survey, I use a broad class of game theoretic techniques to model how relationships—

or “links”—between pairs of socio-economic agents come about. We refer to these socio-economic

agents as players in the context of these models. Each player is assumed to be a fully rational

individual decision maker that acts according to a set of behavioural rules described in the developed

equilibrium concept.

Besides the speci�c behavioural hypotheses on which these equilibrium concepts are based, it

is important to realise that there are some fundamental broad axioms made. �ese fundamental

axioms introduce a few fundamental limitations of the approach that is surveyed here:

(i) �is game-theoretic approach is purely static in nature. �is implies that we start from

a zero state in which no links exist and in which these socio-economic agents decide

whether and which links to build. �e end result is a fully formed network in which certain

value-generating activities are achieved. It would be more realistic to model the formation

of a network as a dynamic building process. However, in the static conception followed

throughout this survey, one network does not evolve into another.

�is has major consequences for how we view network formation and which networks

actually are identi�ed in these constructions. Indeed, the identi�ed equilibrium networks

do not exhibit the features of large social networks identi�ed in the literature quoted on

social networks (Newman, 2010; Barabási, 2016). So, these equilibrium networks are usually

neither scale-free nor small world networks nor satisfying the basic property of assortative

mixing. �is is a severe limitation of such a static approach.
3

On the other hand, the static approach highlights certain properties of rational decision

making in the context of pairwise cooperation, required for building value-generating

relationships under mutual consent. Rather contradictorily, the main theorem in Myerson’s

non-cooperative model shows that rational decision-making does actually not result into

any sensible network formation—the empty network is always supported through a Nash

equilibrium in the Myerson model. So, starting from an empty network, fully rational

players have no mechanism to create a meaningful interaction structure. Only if we impose

that the decision makers are boundedly rational—and, thus, use animal spirits rather than

optimisation in decision making—we arrive at the conclusion that non-trivial and sensible

networks emerge under mutual consent.
4

�is important insight is the main conclusion

presented in this survey.

(ii) �e game-theoretic approach explored in this survey is founded on a negative stability

methodology. Hence, a network is called “stable” if there are no incentives to change the

3
In my discussion in this survey I omit the recent development of incentive-based stochastic models of network

formation. �is approach focuses not only on game theoretic incentives in network formation—as the subject ma�er

of this survey—but combines this concept with stochastic processes that describe random meetings. �is approach was

seminally developed in Jackson and Rogers (2005, 2007) and further addressed in, e.g., Golub and Livne (2010).

4
�is is captured in the notion of a monadically stable network that is founded on trusting behaviour by the players.

Such trusting behaviour is fundamentally boundedly rational. Indeed, to trust another player is not founded on calculation,

but on a leap of faith.
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network. �is is the standard methodology in game theory and neo-Walrasian economics.

Rather than constructing an actual building process, this methodology only looks at which

networks cannot emerge due to the existing incentives to change the network that the

players are endowed with. We thus arrive at a class of equilibrium networks that describe

con�gurations in which such incentives for deviation are absent.

�e consequence of the application of this standard game-theoretic methodology is that

reality is only approximated. �is approach, for example, does not allow the mixing of

modes of incentives, which is common in real-life interaction. �is, therefore, is another

reason why the theoretically derived networks do not have the desired features discussed

in the literature on large social networks as surveyed by Barabási (2016).

�e next section sets out the basic framework of modelling mutual consent in the formation of a

relationship between two players.

2.1 Players, links and networks

We use the basic concepts from the theory of social networks set out in the literature. Following

the accepted symbolism, the set N = {1, . . . ,n} represents a set of players. �e fundamental issue

addressed here is how these players will build pairwise or binary relationships with other players

and ultimately construct a socio-economic network consisting of such binary relationships.

Each player i ∈ N is explicitly endowed with the social ability to build such pairwise relationships

or links with other players, provided that consent is given by the other party. Again following the

accepted terminology in the literature (Jackson, 2008), the pairwise subset {i, j} ⊂ N with i , j

denotes a pairwise relationship between players i ∈ N and j ∈ N . We follow convention to use

shorthand notation and de�ne a link between players i and j as ij = {i, j} ∈ дN , where

дN = { {i, j} | i, j ∈ N and i , j} = {ij | i, j ∈ N } (1)

denotes the set of all potential links on the player set N . As such the set дN acts as the universal set

of all potential links on player set N .

A network on N is now an arbitrary subset of links, i.e., any subset д ⊂ дN is a network on N . In

particular, д = д0 = � is the empty network on N which describes a situation where no links are

formed. Furthermore, д = дN is the complete network on N , which is the largest network consisting

of all potential links among players in N . We introduce GN = {д | д ⊂ дN } as the collection of all

networks on N .

�e neighbourhood of player i ∈ N in network д ∈ GN is given by Ni (д) = {j ∈ N | ij ∈ д}.

�e collection of corresponding neighbouring relationships or links is denoted by Li (д) = {ij ∈ д |

j ∈ Ni (д)}. �e complete collection of all potential links that involve player i ∈ N—or that can be

formed by player i—is denoted by Li = Li (д
N ) = {ij | j , i}.

Adding and deleting links to a network. In formal models of network formation we consider

the deletion and addition of links to given networks. For this I introduce some well-accepted notation

(Jackson, 2008). Consider a network д ∈ GN . For every pair of players i, j ∈ N with ij < д we now
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denote by д + ij the network that results from д by adding the link ij < д, i.e., д + ij = д ∪ {ij} ∈ GN .

Similarly, for some collection of links h ⊂ дN with д ∩ h = �, we denote д + h = д ∪ h the network

that results from adding link collection h to the network д.

Next, consider two players i, j ∈ N with ij ∈ д. We denote by д − ij = д \ {ij} ∈ GN the network

that results from removing the link ij from the network д. Again, for any collection of links h ⊂ д

we denote д − h = д \ h the network that results from removing the links in h from the network д.

1

2

3

4

5

Figure 1: Illustration for link addition and deletion.

Example 2.1 With these notational conventions we are now equipped to address link formation pro-

cesses. To illustrate this notation, consider the network д = {12, 13, 24, 34, 35} on N = {1, 2, 3, 4, 5}

as depicted in Figure 1 above consisting of the red and black links. Considering the green link

45 < д, then д′ = д + 45 = {12, 13, 24, 34, 35, 45} is depicted in Figure 1 as the network consist-

ing of all coloured links. Finally, removing the red link set h = {13, 35} ⊂ д from д results into

д′′ = {12, 24, 34}, depicted by collection of the black links only in Figure 1. �

Payo�s. �roughout the literature on game theoretic approaches to network formation, players

are assumed to be fully incentivised in their drive to build and maintain links as well as delete links

in existing networks. �ese incentives are introduced as a individualised payo� function. Indeed, for

every player i ∈ N we introduce player i’s network payo� function as φi : GN → R, which assigns

to every network д ∈ GN a value φi (д) that evaluates i’s situation as a member of the networked

community described by д.

We can now capture all payo� information on the population N of players in the network payo�

function given by φ = (φ1, . . . ,φn) : G
N → RN . In particular, I emphasise that the function φ

indeed captures all incentives for the decision makers in N in the network formation processes to

be considered next.
5

A network payo� for a player captures all values emanating in the structured community that

is perceived or received by that player. �is includes all perceived externalities of third parties. In

this regard, the network payo� function can capture widespread externalities from relationship and

network formation in that community. �e addition of network externalities in the payo� structure

di�erentiates this inclusive network payo� approach from the more classical cooperative game

theoretic payo� structure employed by Myerson (1977, 1980), Du�a and Mutuswami (1997) and

5
We might refer to the multi-dimensional function φ also as representing the network payo� structure.
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van den Nouweland (1993, 2004). �e payo� function including widespread externalities has been

seminally introduced in network theory by Jackson and Wolinsky (1996).

Example 2.2 I illustrate this concept by revisiting the networks depicted in Figure 1. For example,

player 1 can be assigned φ1(д) = 1 as well as φ1(д
′) = 5 even though her neighbours in both networks

are exactly the same, i.e., N1(д) = N1(д
′) = {2, 3}. �is, therefore, captures widespread externalities

from the creation of the link 45 in the network д from the perspective of player 1. �

2.2 Myerson’s approach to network formation

�e most fundamental and basic model of how networks form under mutual consent was seminally

introduced as an example in Myerson (1991, page 448). He pointed out that in a very simple network

formation game—known as the Myerson model—, the resulting networks that are supported by Nash

equilibria in this game always include the empty network д0
. Hence, building no links at all is an

equilibrium in the incentive structure generated by player bene�ts to network formation.

Myerson presented this as a negative insight, since it indicates that purely noncooperative game

theory cannot provide a fertile basis for a debate of how non-trivial networks between players

emerge. However, what this really expresses is that networks are not forming if players act purely

sel�shly. My contention is throughout that it actually has to be expected that pure sel�shness would

undermine cooperative acts such as forming links between pairs of players.

Here I initially explore the seminal Myerson model itself. In subsequent sections I turn to

extensions of this basic model with added consideration of link formation costs. For the proper

development of the Myerson model we need to review some basic non-cooperative game theory.

Preliminaries: Some game theory. �is section relies heavily on standard noncooperative

game theory. Again we let N = {1, . . . ,n} be the set of players. A game on N is a pair (A, π ) with

A = (A1, . . . ,An) an ordered collection of strategy sets such that each player i ∈ N is assigned her

individual strategy set Ai and a game theoretic payo� function π = (π1, . . . , πn) : A→ R
N

where

A =
∏

i ∈N Ai is the set of all strategy tuples generated in A.

Hence, in a non-cooperative game, each player i ∈ N is endowed with her individual strategy

set Ai and a payo� function πi : A→ R. �e fundamental idea is that every player selects a strategy

that optimises her payo�s, provided that other players also select strategies that a�ect this payo�.

As such, a game is a mathematical representation of a social interaction situation. Game theory is

now a collection of rules and tools that model how players make decisions in the context of such

social interaction situations.

A strategy tuple is a list a = (a1, . . . ,an) ∈ A. We use the convention that the list of strategies of

players other than i ∈ N are indicated by a−i = (a1, . . . ,ai−1,ai+1, . . . ,an) ∈
∏

j ∈N : j,i Aj . Hence,

a = (ai ,a−i ).

De�nition 2.3 A strategy tuple a∗ ∈ A is a Nash equilibrium in the game (A, π ) if for every player

i ∈ N and any strategy bi ∈ Ai it holds that πI (a∗) > πi (bi ,a∗−i ). In a Nash equilibrium, every player

optimises her strategy, given the strategic choices of all other players.
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A Nash equilibrium can also be expressed in terms of “best responses”. Formally, a strategy ai ∈ Ai

is a best response to strategy tuple a−i ∈
∏

j ∈N : j,i Aj if for every strategy a′i ∈ Ai it holds that

πi (ai ,a−i ) > πi (a
′
i ,a−i ). Hence, a best response is the strategy for player i that optimises her payo�s

given that all other players j , i select the strategy aj ∈ Aj .

Now a strategy tuple a∗ ∈ A is a Nash equilibrium if and only if for every player i ∈ N it holds

that a∗i is a best response to a∗−i . As such a Nash equilibrium is a �xed point of the best response

correspondence that is generated by the game. Furthermore, it can be shown that in this respect

a Nash equilibrium usually can be interpreted as a saddle point in a well-constructed geometric

representation of the game.

�e Myerson model. Myerson (1991) introduced his approach to modelling the formation of

networks as an illustration of the underlying processes that determine the Nash equilibria in a

non-cooperative strategic form game. Myerson’s framework is the quintessential model of mutual

consent in link formation. �e Myerson model encompasses a basic signalling game in which

players send each other messages about whether they want to form a link or not. Due to its very

fundamental and basic nature, it is a model that acts as the benchmark in any discussion on consent

in link formation.

In Myerson’s framework, players costlessly signal to each other whether they want to form links.

Now, a link is established if and only if the two players signal both that they would like to form the

link. Formally, the Myerson model Γmφ on player set N under network payo� function φ : GN → RN

is a non-cooperative game Γmφ = (A
m, πm) given as follows:

• For every player i ∈ N , her strategy set is given by all vectors of signals to other players in

N :

Am
i =

{
`i = (`i1, `i2, . . . , `in)

�� `i j ∈ {0, 1} and `ii = 1

}
; (2)

Here, `i j is a signal that player i communicates to player j about her intentions to form a link

with j. If `i j = 1, player i indicates that she is interested in forming the link with player j; if

`i j = 0, player i signals that she wants to remain una�ached to player j.

• A link ij is now formed if both players i and j signal to each other they want to form the link,

i.e., if `i j = `ji = 1. If we denote by ` = (`1, . . . , `n) ∈ A
m = Am

1
× · · · ×Am

n a strategy pro�le,

then the resulting network can be identi�ed as

д(`) = {ij ∈ дN | `i j = `ji = 1}. (3)

We say that д(`) is the network supported by the strategy pro�le ` in the Myerson model.

• �e Myerson model is completed by the game theoretic payo� function πm : Am → RN

de�ned by

πmi (`) = φi (д(`)) . (4)
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Clearly, the payo� function πm re�ects the property that signalling is costless and that there

are no costs incurred in the formation of a link between any pair of players.

In the next discussion, I investigate the networks that are supported through Nash equilibria in the

Myerson model.

M-networks. �e Nash equilibria in the basic Myerson model form a class of signalling pro�les

that support networks on N that are stable against unilateral modi�cation. We denote these Nash

equilibrium networks as “M-networks” to distinguish this class of networks from other classes of

networks.

De�nition 2.4 Let φ be a network payo� function on player set N and let Γmφ = (A
m, πm) be the

corresponding basic Myerson model. A network д ∈ GN is an M-network if there exists a Nash

equilibrium strategy tuple `д ∈ Am in Γmφ such that д(`д) = д.

Clearly, using the Nash equilibrium conditions and the de�nition of πm , we get the following

M-network requirement: For every player i ∈ N and every signal vector `i ∈ A
m
i it holds that

φi
(
д(`i , `

д
−i )

)
6 φi (д(`) ) .

�e concept of M-network is at the core of the assessment of network formation itself, since it

describes the stable outcomes of the basic signalling framework represented in the Myerson model.

Crucially, Myerson (1991) already pointed out that the empty network is always supported as an

M-network. Formally, this can be expressed as follows.

Proposition 2.5 (Myerson’s Lemma) In the Myerson model Γmφ = (A
m, πm) the “no-link” signal

pro�le `0 = (0, . . . , 0) ∈ Am is a Nash equilibrium. Consequently, the empty network д0 = д(`0) is an

M-network.

Proof. Let `0i j = 0 for all i, j ∈ N , making up the strategy pro�le `0. �en, for any player i ∈ N ,

any signal vector `i ∈ A
m
i is a best response to `0

−i , since д(`0
−i , `i ) = д

0
irrespective of the selected

signal vector `i . �erefore, `0i itself is a best response to `0
−i , showing that `0 is a Nash equilibrium

in Γmφ = (A
m, πm).

�is property points out that non-trivial M-networks are very hard to form; rational self-interest

easily results in complete failure and no cooperation might emerge. In this case, Myerson’s Lemma

indicates that, without some supporting mechanism, there simply are no incentives to justify that

any links are formed at all. So, Myerson’s Lemma points to the very fundamental issue of human

cooperation: Why would rational human beings be cooperative? In this regard, Myerson’s Lemma

is a very succinct expression of this major question in social science and economics.

3 Jackson-Wolinsky stability concepts

�e challenge of modelling non-trivial network formation stated in the discussion of the Myerson

model as Myerson’s Lemma was taken on by Jackson and Wolinsky (1996). �ey formulated
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cooperative equilibrium concepts that are tailored to the speci�c demands of modelling bilateral link

formation. �is resulted in the notion of a “pairwise stable” network.

I �rst discuss a class of cooperative or pairwise concepts of network stability from a link-

based perspective as explored in Gilles, Chakrabarti, and Sarangi (2006, 2012). �is concerns four

fundamental link-stability principles, each founding a particular form of cooperative stability, and

three further derived stability notions—including the seminal pairwise stability concept introduced

by Jackson and Wolinsky (1996).

Central to this approach is that while mutual consent is required for establishing a link, a player

is able to delete her links unilaterally. Here, we focus on link-centred considerations. Hence, how

would the deletion of one or more links a�ects the players’ payo�s? Similarly, how would the

addition of one or more links a�ect payo�s? �ese mutual considerations are brought together into

a link- or network-based notion of stability.

Deleting links from networks. �roughout it is assumed that players have full autonomy or

sovereignty over the decision to delete one or more of her links. Indeed, the principle of mutual

consent requires that players control which links they participate in. �is implies that every player

can veto her participation in any link or relationship. Based on this consideration, I introduce two

fundamental stability concepts concerning the deletion of links.

As before, let φ : GN → RN be a network payo� function on the player set N .

(i) A network д ∈ GN is link deletion proof (LDP) for φ if for every player i ∈ N and every

neighbour j ∈ Ni (д), it holds that φi (д − ij) 6 φi (д).

Link deletion proofness requires that no player has an incentive to sever an existing link

with one of her neighbours.

We denote by D(φ) ⊂ GN the class of all link deletion proof networks for the given payo�

function φ (Jackson and Wolinsky, 1996).

(ii) A network д ∈ GN is strong link deletion proof (SLDP) for φ if for every player i ∈ N

and every set of her direct links h ⊂ Li (д), it holds that φi (д − h) 6 φi (д).

Strong link deletion proofness requires that no player has incentives to sever links with

one or more of her neighbours simultaneously.

We denote byDs (φ) ⊂ G
N

the class of all strong link deletion proof networks for the given

payo� function φ (Gilles, Chakrabarti, and Sarangi, 2006).

From the de�nition it is clear that any SLDP network is always LDP and, therefore, strong link

deletion proofness is indeed a stronger notion than (regular) link deletion proofness. As indicated,

LDP was seminally introduced in Jackson and Wolinsky (1996), while SLDP was only introduced as

a stand-alone concept in early dra�s of Gilles, Chakrabarti, and Sarangi (2006).

Second, the empty network д0 = � on any set of players N is trivially strong link deletion proof.

Indeed, this network does not contain any links and, therefore, the deletion of links is vacuously

satis�ed. We can therefore summarise that:
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Proposition 3.1 For any network payo� function φ : GN → RN it holds that

д0 ∈ Ds (φ) ⊂ D(φ) ⊂ G
N . (5)

�e �rst question that I consider is under which conditions link deletion proofness is exactly the

same as strong link deletion proofness. �is seems a rather innocuous question, since SLDP is so

much stronger a concept than LDP. Nevertheless, it is enlightening to identify the exact property on

the network payo� structure φ that allows this equivalence.

�eorem 3.2 Strong link deletion proofness and link deletion proofness are equivalent for network

payo� structure φ in the sense that D(φ) = Ds (φ) if and only if the network payo� structure φ is

convex on the class of link deletion proof networksD(φ) ⊂ GN in the sense that for every LDP network

д ∈ D(φ), every player i ∈ N , every neighbour j ∈ Ni (д) and every link set h ⊂ Li with h ∩ Li (д) = �

it holds that∑
i j ∈h

[φi (д + ij) − φi (д) ] > 0 implies that φi (д + h) > φi (д). (6)

For a proof of �eorem 3.2 I refer to Appendix A.1 of this survey.

�e convexity property on the payo� structure φ requires that the sign of the sum of values

from adding one link to a network from a set of links fully determines whether adding all links is

bene�cial or not. Hence, looking at links one-by-one gives complete information about whether it is

bene�cial to add all links to the network or not.

Adding links to networks. Next I consider how players assess the addition of a link to an existing

network. Again we take the idea of consent in link formation as central into our reasoning here.

�is implies that both parties in the formation of a new link have to agree that adding this link is

bene�cial.

(iii) A network д ∈ GN is link addition proof (LAP) for φ if for all i, j ∈ N with ij < д, it holds

that φi (д + ij) > φi (д) implies φ j (д + ij) < φ j (д).

Link addition proofness states that there are no incentives for any pair of players to form

an additional link. �is is based on the requirement of mutual consent in link formation.

Indeed, if one player would like to add a link, the other player would have strong objections.

In this case this is formulated as that, if one player has bene�ts from forming the link, the

other (consenting) party has losses and, thus, would withhold her consent.

We denote by A(φ) ⊂ GN the class of all link addition proof networks for the given payo�

function φ (Jackson and Wolinsky, 1996).

(iv) A network д ∈ GN is strict link addition proof (SLAP) for φ if for all i, j ∈ N , it holds

that ij < д if and only if φi (д + ij) < φi (д) as well as φ j (д + ij) < φ j (д).

Strict link addition proofness is a far stronger notion that LAP. Indeed, it requires that both

players agree that forming an additional link between them is not bene�cial for either of

them. �is agreement is imposed and only a certain very speci�c type of network payo�

10



structures would support such networks to exist. Consequently, it has to be expected that,

for an arbitrary regular network payo� function, only a rather small class of networks

actually satis�es this property.

We denote by As (φ) ⊂ G
N

the class of all strict link addition proof networks for the given

payo� structure φ (Gilles and Sarangi, 2010).

�e introduced notions of link addition proofness require some clari�cation. �ese two notions

indeed only seem to partially cover the idea that a network is stable if it satis�es the property that

“if i has an incentive to form an additional link with j, then j has no incentive to form a link with i”.

�is is subject to the next discussion.

To understand link addition proofness in more detail, we can reformulate it. Indeed, a network д

is link addition proof if and only if for all players i, j ∈ N with ij < д :

φi (д + ij) > φi (д) implies φ j (д + ij) 6 φ j (д). (7)

�is has some interesting consequences regarding the interpretation of the LAP property. First, a

link ij < д for some i, j ∈ N is non-discerning if it holds that

φi (д + ij) = φi (д) as well as φ j (д + ij) = φ j (д). (8)

From the derivation above, the de�nition of link addition proofness is indeed ambiguous whether any

non-discerning link ij should be in the network for it to be LAP or not. Hence, such non-discerning

links can arbitrarily be added to or deleted from networks without the LAP property being a�ected.

�us, the class of non-discerning links makes the determination of LAP networks “fuzzy”.

To address this issue of the addition or deletion of non-discerning links, I introduce a third type

of link addition proofness:

(v) A network д ∈ GN is ?-link addition proof (?-LAP) for φ if for all players i, j ∈ N , it

holds that if ij < д, then φi (д + ij) > φi (д) implies φ j (д + ij) < φ j (д).

We denote by A?(φ) ⊂ G
N

the class of all ?-link addition proof networks for the given

payo� structure φ.

�is minor modi�cation of the de�nition of link addition proofness simply requires that all non-

discerning links should be part of a ?-link addition proof network. �is makes the de�nition

unambiguous.

Example 3.3 To delineate the three link addition proofness concepts introduced here, we can

explore an example of a network payo� function in which these concepts result in di�erent classes

of networks. We consider three players and all possible networks, i.e., N = {1, 2, 3} and GN = {д |

д ⊂ дN } where дN = {12, 23, 13}. Note that there are exactly eight possible networks on N , i.e.,

#GN = 8.

We now consider a particular network payo� function φ on the generated class of networksGN on N .

All potential network payo�s represented by φ can be represented in an appropriately constructed

table:

11



Network д φ1(д) φ2(д) φ3(д) Stability

д0 = � 0 0 0 LAP

д1 = {12} 0 0 1 ?-LAP

д2 = {13} 0 0 0

д3 = {23} 0 0 0

д4 = {12, 13} 2 1 0

д5 = {12, 23} 1 2 0

д6 = {13, 23} 0 1 0

д7 = дN 3 3 3 SLAP

First, note that д0
is link addition proof, but not ?-link addition proof. Indeed, if any link is added

to the empty network, no payo�s are changed for any of the players involved. On the other hand,

there are no losses, thus precluding that д0
is ?-link addition proof.

Next, д1
is ?-link addition proof, but not strong link addition proof. Indeed, any addition of a link

to д1
results into a loss for player 3. However, adding link 13 results into a strict gain for player 1,

implying that д1
is not strong link addition proof.

�ird, the complete network дN is strong link addition proof by tautology. Indeed, there are no links

to be added to this network, and therefore vacuously the property of strong link addition proofness

is satis�ed.

I remark that none of the other networks have any link addition proofness properties. �

Next I explore the equivalence of these link addition proofness concepts. In order to explore these

equivalences e�ectively, I introduce two auxiliary properties of the network payo� structure.

De�nition 3.4 Consider a network payo� structure φ on GN . �en:

• �e structure φ is said to be discerning on the class of networks G ⊂ GN if for every network

д ∈ G it holds that for any pair i, j ∈ N with ij < д either φi (д + ij) , φi (д) or φ j (д + ij) , φ j (д)

or both.

• �e structure φ is said to be uniform on the class of networks G ⊂ GN if for every network

д ∈ G and for any pair i, j ∈ N with ij < д it holds that

φi (д + ij) > φi (д) implies φ j (д + ij) > φ j (д). (9)

Using these auxiliary concepts we can now show the following equivalences:

�eorem 3.5 Let φ be some network payo� structure on the class of all networks GN on the set of

players N . �en the following properties hold:
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(a) дN ∈ As (φ) ⊂ A?(φ) ⊂ A(φ);

(b) It holds that A?(φ) = A(φ) if and only if φ is discerning on A(φ), and;

(c) It holds that As (φ) = A?(φ) if and only if φ is uniform on A?(φ).

For a proof of �eorem 3.5 I refer to Appendix A.2 in this survey. Furthermore, from �eorem 3.5 it

is easily concluded that the following equivalence also holds:

Corollary 3.6 SLAP and LAP are equivalent concepts for payo� structure φ in the sense thatAs (φ) =

A(φ) if and only if the payo� structure φ is discerning and uniform on A(φ).

3.1 Notions of pairwise stability

In the previous discussion, I introduced four fundamental stability concepts on adding links to and

deleting links from a network. �ese four basic notions can be combined to de�ne derived concepts.

�e �rst concept—known as pairwise stability (Jackson and Wolinsky, 1996)—combines the weakest

link stability notions and has been the subject of extensive discussion in the literature. �is notion

implicitly assumes that players only consider the deletion and addition of one speci�c link at a

time.

(vi) Network д is pairwise stable (PS) for φ if д is link deletion proof as well as link addition

proof. We denote by P(φ) = D(φ) ∩ A(φ) the family of pairwise stable networks for the

payo� function φ.

�e original pairwise stability concept—introduced by Jackson and Wolinsky (1996)—only concerns

itself with the contemplation of adding a single link to or deleting a single link from a given network.

If there are no incentives for players to either add a link to the existing network or delete a link

from the network, then the network is “pairwise stable”: �ere are no incentives present under the

hypothesis of mutual consent in link formation that anybody wants to change a single link in this

network.

Two further derived stability concepts, which strengthen the notion of pairwise stability, have

particular relevance in the theory of consent in link formation. Strong pairwise stability (Gilles,

Chakrabarti, and Sarangi, 2006, 2012) assumes that players can delete an arbitrary collection of links

under their control. Hence, they can veto any link in which they participate. On the other hand, the

contemplation of adding links remains con�ned to adding a single link.

Strict pairwise stability (Gilles and Sarangi, 2010) is the strongest notion in this framework. It

not only considers that players can delete any number of their existing links, but also that they are

assumed to be in agreement regarding the addition of a link to an existing network. It is clear that

for an arbitrary network payo� structure, the collection of such strictly pairwise stable networks

might well be empty. Only for certain network payo� structures such networks might emerge.

(vii) Network д is strongly pairwise stable (SPS) for φ if it is strong link deletion proof as well

as link addition proof.

We denote by P?(φ) = Ds (φ) ∩ A(φ) the family of strongly pairwise stable networks for

the payo� function φ.
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(viii) Network д is strictly pairwise stable (SPS*) for φ if it is strong link deletion proof as well

as strict link addition proof.

We denote by Ps (φ) = Ds (φ) ∩ As (φ) the family of strictly pairwise stable networks for

the payo� function φ.

�ese three pairwise stability concepts generate di�erent classes of networks in most cases. I

consider an example to illustrate this.

Example 3.7 Again consider three players and all potentially generated networks, i.e., N = {1, 2, 3}

withдN = {12, 23, 13}. Now, consider a network payo� functionφ on the generated class of networks

GN on N represented in the following table:

Network д φ1(д) φ2(д) φ3(д) Stability

д0 = � 0 0 0 Strongly PS

д1 = {12} 0 0 5 Strictly PS

д2 = {13} 0 0 0

д3 = {23} 0 0 0

д4 = {12, 13} -1 0 0

д5 = {12, 23} 0 -1 0

д6 = {13, 23} 0 1 1

д7 = дN 3 3 3 PS

Again we discuss the properties of these networks.

First, note that the empty network д0
is trivially SLDP and in this case as well LAP. �erefore, it is

indeed strongly pairwise stable.
6

Second, д1
is LDP and, therefore, SLDP. Moreover, д1

is SLAP. Indeed, adding link 13 to д1
results

into strict losses for both players 1 and 3. Similarly, for link 23. �us, we conclude that д1
is strictly

pairwise stable.

Finally, the complete network дN is SLAP due to being the maximal network. Furthermore, дN is

LDP. However, дN is not SLDP. player 3 has the strict incentive to delete both her links and revert

to network д1
.

We conclude from this discussion that this simple network payo� example induces three distinct

classes of pairwise stable networks. �

Using the equivalence results stated in �eorems 3.2 and 3.5, we can now conclude the following

equivalences between the formulated pairwise stability concepts. �e proofs are rather transparent

and therefore omi�ed.

6
It should be remarked that networks with at most one link are SLDP if they are LDP. �erefore, they are strongly

pairwise stable if they are link addition proof and link deletion proof.
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Corollary 3.8 Consider a network payo� structure φ on the class of all networks GN on set of players

N . �en the following relationships hold:

(a) Ps (φ) ⊂ P?(φ) ⊂ P(φ);

(b) Pairwise stability and strong pairwise stability are equivalent concepts for φ in the sense that

P(φ) = P?(φ) if and only if φ is convex on P(φ);

(c) Strong pairwise stability and strict pairwise stability are equivalent concepts for φ in the sense

that P?(φ) = Ps (φ) if and only if φ is discerning and uniform on P?(φ), and;

(d) Pairwise stability and strict pairwise stability are equivalent concepts for φ in the sense that

P(φ) = Ps (φ) if and only if φ is convex, discerning as well as uniform on P(φ).

3.2 Strong stability

Next I discuss some of the ideas put forward by Jackson and van den Nouweland (2005). �ey

investigated networks that emerge if coalitions of arbitrary size can make changes to the network

in a coordinated fashion to the coalition’s overall bene�t.
7

As such strong stability is an extension

of the pairwise stability concept to allow arbitrary coalitions to adjust the network structure under

their control.

As a preliminary we denote a coalition as any subset S of players in N ; hence, a coalition is

any S ⊂ N . �is includes the empty coalition � as well as the “grand” coalition N itself. In a

non-cooperative game (A, π ), for any coalition S ⊂ N and strategy pro�le a ∈ A we denote by aS

the S-restriction of a de�ned by (aj )j ∈S and by aN \S its complement (ak )k<S .

Now, in a non-cooperative game (A, π ) a strategy tuple a ∈ A is a strong equilibrium if for every

(non-empty) coalition of players S ⊂ N and every coordinated strategic deviation bS = (bi )i ∈S ∈

AS =
∏

i ∈S Ai it holds that

πi
(
aN \S ,bS

)
6 πi (a) for all i ∈ S (10)

Next we introduce the strong stability concept put forward by Jackson and van den Nouweland

(2005). �e next de�nition essentially transposes strong equilibrium conditions to network formation

situations.

De�nition 3.9 Let φ be a network payo� function on N and consider the corresponding Myerson

model Γmφ = (A
m, πm).

(i) A network д′ ∈ GN can be obtained from network д ∈ GN through the coordinated actions

of coalition S ⊂ N if д′ = д + h+ − h−, where h+ ⊂ дS = {ij | i, j ∈ S} and h− ⊂ ∪i ∈S Li (д).

(ii) A network д ∈ GN is strongly stable if for every coalition S ⊂ N and every network д′

that is obtainable from network д through coordinated actions from coalition S it holds that

7
�is approach is akin to the strong equilibrium concept proposed by Aumann (1959) in non-cooperative game theory.

Jackson-Nouweland’s concept of strong stability can be viewed as a network theoretical implementation of the ideas

behind Aumann’s strong equilibrium concept.
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φi (д
′) > φi (д) for some player i ∈ S implies that there exists some other player j ∈ S with

φ j (д
′) < φ j (д).

It should be remarked that Du�a and Mutuswami (1997) introduced a slightly di�erent de�nition

of “strong stability”. �ey consider that all members of S need to be made strictly be�er o� for a

deviation to be successful.
8

Strong equilibrium is a very demanding concept and these equilibria do not exist in many game

theoretic decision situations. Similarly, the notion of strong stability is equally demanding, resulting

that such networks rather unlikely exist. �e next example illustrates these issues and introduces

the notion of costly link formation that will be explored further in the next two subsections.

Example 3.10 (Costly trade networks)

�is example of a Walrasian trade network has been introduced seminally in Jackson and Wa�s

(2002) and further developed in Jackson and van den Nouweland (2005) and Gilles, Chakrabarti,

and Sarangi (2011). It considers an economy of n players who trade goods through connection

paths. �ere are two commodities X and Y and all players are endowed with a Cobb-Douglas utility

function u(x,y) =
√
xy. All players are assumed to have a commodity endowment of either (1, 0) or

(0, 1) with an equal probability of
1

2
.

Players can trade with any other player that they are connected with, directly or indirectly. Hence,

there emerge complete markets in each of the components. So, for n = 5 a network д = {12, 23, 45}

generates two components and two markets, namely 123 separated from 45. Additional links,

therefore, not always contribute to the extent of these markets: д′ = {12, 23, 13, 45} results in exactly

the same markets 123 and 45.

�e cost c of forming any link ij is uniform and set at c > 1

2
. �e costs of the formation of the trade

network are divided equally among the members of a market, being a component of the network.

�e network payo� function φ is now de�ned as the expected net bene�ts from participating in the

generated market structure. �is can be developed as follows.

First, consider the case of a market of the size two. �ere is a probability of
1

2
that these two players

have opposite endowments and a probability of
1

2
that they have the same endowment. Hence, the

probability of trade is
1

2
resulting in a Walrasian allocation of ( 1

2
, 1

2
) resulting in φ = 1

2
·

√
1

4
− 1

2
c =

1

4
− 1

2
c < 0.

More generally consider a market (component) of k players. �e probability of r players having

endowment (0, 1) and (k − r ) players having endowment (1, 0) is now

kCr
(

1

2

)k
− r ·

(
1

2

)r
= kCr

(
1

2

)k
.

�e expected gross payo� from trade is now given by

r
2k ·

(
k − r

r

) 1

2

+ k−r
2k ·

( r

k − r

) 1

2

=

√
r (k − r )

k

8
In the de�nition used by Jackson and van den Nouweland (2005) a deviation needs to make all members of S to be at

least as well o� and making one member strictly be�er o�.
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Hence, taking into account that there are exactly k − 1 links required to build a market for k players,

the resulting net payo� from this trade network is given by

φ =
1

k · 2k

[
k−1∑
r=1

kCr
√
r (k − r )

]
−
(k − 1)c

k
.

Turning to n = k = 3 it can easily be computed that the net bene�ts to each player are given by

φ =

√
2

4

−
2c

3

> 0 for
1

2
< c < 3

√
2

8
.

For n = k = 3 and the given link formation cost range there are two pairwise stable networks,

namely the connected network and the (ine�cient) empty network. �e empty network is bilaterally

stable, since creating a single link between two players is not bene�cial for the given link formation

cost range. On the other hand, the empty network is not strongly stable. Indeed, if all three players

coordinate they would create two links to make a bene�cial market among them.

�is also shows that the connected component based on two links among the three players is strongly

stable. �

In this section I discussed the stability concept and its variants in the link-based cooperative

framework as seminally set out by Jackson and Wolinsky (1996). It is clear that these concepts are

rather limited in their scope, since they are link-based only. Individual and collective incentives

are not truly taken into account. Indeed, considerations are founded on adding and deleting links;

the players’ incentives are assumed to coincide with the (marginal) bene�ts generated from these

links rather than the individualised payo�s. Next, I return to Myerson’s original non-cooperative

framework founded on the direct bene�ts to players to the formation of links.

4 Re�nements of M-networks

In this section I review stability and equilibrium concepts that re�ne the class of M-networks that

emerges from the Myerson approach to non-cooperative network formation under mutual consent.

�is literature is founded on the insight that the class of M-networks is very large. �is is subject of

the next theorem, which states the equivalence of the class of M-networks with the set of strong

link deletion proof networks.

�eorem 4.1 Let φ be a network payo� function on N and consider the corresponding Myerson model

Γmφ = (A
m, πm).

(a) A network д ∈ GN is an M-network for φ if and only if д is strong link deletion proof for φ.

(b) Suppose that the network payo� structure φ is link monotone in the sense that for every player
i ∈ N , every network д ∈ GN and every link ij < Li (д) it holds that φi (д + ij) > φi (д). �en

every network д ∈ GN is supported as an M-network.

For a proof of this theorem I refer to Appendix A.3.
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�e fundamental insights presented as Myerson’s Lemma and �eorem 4.1 have motivated

economists and social scientists to look into “re�nements” of the Nash equilibrium concept in

the Myerson model. �ese re�nement equilibrium concepts have been developed particularly for

addressing link formation issues from the perspective of consent. �ese a�empts can be divided

into two classes.

First, the standard approach in game theoretic models of network formation is to strictly apply

methodological individualistic perspectives. �us, all motivations emanate from the player decision

makers and are not considered to be external to the rational decision making process. �is has

resulted into a number of equilibrium concepts that simply assume that decision makers have a

natural ability to cooperate if the incentives are in favour of such cooperation. Below I present

the re�nements considered by Bloch and Jackson (2006) and Gilles, Chakrabarti, and Sarangi (2011,

2012).

�e second approach is to explicitly assume that decision makers are not fully individualistic,

but adhere to some institutional or trusting norms of behaviour. van de Rijt and Buskens (2008) and

Gilles and Sarangi (2010) explicitly introduce a model of trusting behaviour through the introduction

of a individualised belief or conjecture that other decision makers will form links if they bene�t

from that. �us, the trust in network formation is internalised into the player decision makers; all

such decision makers adhere to a well-de�ned norm of decision making that expresses trusting

behaviour. �is is fully developed in Section 5.

Similarly, certain equilibrium concepts in non-cooperative game theory are founded on institu-

tional signalling systems. �e main such concept is Aumann’s correlated equilibrium, which can be

used to introduce institutional arrangements in the decision making processes of players (Aumann,

1974). Here these institutions are explicitly modelled as external to these players. �ey adhere to

these institutions since they bene�t from applying these institutional behavioural rules instead of

acting purely sel�sh. �is is explored fully in Section 6.

4.1 Pairwise Nash equilibrium and bilateral stability

Goyal and Joshi (2006) introduced a re�nement of the M-network concept that implements the idea

of cooperation between players to modify the network through coordinated actions. �us, it is

assumed that decision makers can implement bilateral or pairwise coordinated network modi�cation.

So, we consider any pair of players i, j ∈ N who consider how to modify their strategic signals `i

and `j to modify the resulting network in their favour.

�is bilaterally coordinated action can be modelled in two di�erent fashion. First, within the

Myerson model as the so-called “pairwise” Nash equilibrium (Goyal and Joshi, 2006) and, second, as

a network stability notion, denoted as “bilateral” stability (Gilles, Chakrabarti, and Sarangi, 2011).
9

�is is introduced in the next de�nition.

9
I remark here that I use a terminology that deviates from the literature. Indeed, the pairwise Nash equilibrium concept

in the Myerson model was seminally introduced in Goyal and Joshi (2006) and explored further by Bloch and Jackson

(2006) and Joshi, Mahmut, and Sarangi (2020). It refers to M-networks that are additionally link addition proof. �erefore,

I use the notion of pairwise Nash equilibrium here in a slightly di�erent way as introduced in Gilles, Chakrabarti, and

Sarangi (2011).
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De�nition 4.2 Let φ be a network payo� function on N and consider the corresponding Myerson

model Γmφ = (A
m, πm).

(i) A signal pro�le ` ∈ Am is a pairwise Nash equilibrium in Γmφ if ` is a Nash equilibrium in

Γmφ and for every pair of players i, j ∈ N it holds that

πmi

(
`′i , `

′
j , `−i , j

)
> πmi (`) implies that πmj

(
`′i , `

′
j , `−i , j

)
< πmj (`) (11)

for all deviations `′i ∈ Am
i and `′j ∈ Am

j . (Here, `−i , j refers to the restricted signal pro�le

(`h)h,i , j .)

(ii) A network д ∈ GN is bilaterally stable for φ if д is strong deletion proof for φ and for every

pair of players i, j ∈ N and network д′ = д + ˆh − hi − hj with ˆh ∈ { {ij},�}, hi ⊂ Li (д) and

hj ⊂ Lj (д) it holds that

φi (д
′) > φi (д) implies that φ j (д′) < φ j (д). (12)

It is not hard to see that in the Myerson model there is a complete equivalence between these two

concepts. �e pairwise Nash equilibrium is simply a strategic formulation of bilateral stability. I

give the following proposition therefore without proof.

Proposition 4.3 Let φ be a network payo� function on N and consider the corresponding Myerson

model Γmφ = (A
m, πm). A network д ∈ GN is supported through a pairwise Nash equilibrium ` ∈ Am

with д(`) = д if and only if д is bilaterally stable for φ.

Although these concepts are quite natural within the context of network formation, the additional

bene�ts are rather limited. Coordinated pairwise activity is well captured by the three pairwise

stability concepts that have been introduced in this survey. �e notion of unilateral stability (See

Section 5) also captures coordinated action in the sense that it is assumed that players respond

positively to a player’s proposal to change the network if that is to their bene�t. Bilateral stability

does not extend this to pairs of players, but reverts back to the normal best response rationality

principle that others keep their actions unchanged.

Stability of higher orders. �e notion of bilateral stability can easily be extended to stability

of higher orders. Indeed, under bilateral stability it is assumed that coalitions of two players can

modify the network as proposed above. �is can be extended to coalitions of at most r members,

where r ∈ N is the assumed maximum size of the coalition under consideration. �is is referred to as

“stability of order r” in Gilles, Chakrabarti, and Sarangi (2011). In particular, if r = n, we arrive at the

strong stability notion of Jackson and van den Nouweland (2005). �is shows that these concepts

represent intermediate stability notion between M-networks and strongly stable networks.
10

10
For results concerning these intermediate stability concepts, I refer to the quoted papers.
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4.2 Two-sided link formation costs

Example 3.10 introduced the idea that there are normally link formation costs. In this particular case

the costs of network formation are borne equally among all players that participate in the network.

�is signi�es a collective approach to the allocation of network formation costs. It is more natural

to assume that players only bear the costs of the links that they participate in. Next, I develop the

idea of link formation costs further and re�ne the notion of M-networks to capture this.

In particular, I consider a modi�cation of the Myerson model where the “intent to form links” is

costly in the sense that approaching another player to form a link involves explicit investment of

time, e�ort and energy. Hence, the act of sending a signal is costly. However, if the other player

does not reciprocate and the link does not materialise, the player choosing to “reach out” still incurs

this cost.
11

�is means that if player i ∈ N contemplates building a link ij with player j ∈ N and

sends a message `i j = 1, she incurs a cost of ci j > 0. On the other hand, `i j = 0 signi�es no link is

a�empted to be made, which imposes no costs on player i .

Formally, a link formation cost structure can therefore be represented by a function c : N×N → R+

where c(i, j) = ci j > 0 is the cost that player i ∈ N incurs for sending a message to player j ∈ N ,

using the convention that c(i, i) = 0 for all i ∈ N . Hence, player i incurs a cost ci j > 0 when

communicating to player j that she wants to form a link. In particular, this cost refers to the e�ort

to respond to messages sent by others. Obviously, if ci j = 0, then there is no cost to communicating

and sending messages from i to j.

�is construction introduces the consent model with two-sided link formation costs as a modi�-

cation of the (basic) Myerson model Γmφ given as a non-cooperative game Γaφ (c) = (A
a, πa), where

player i’s strategy set is given by Aa
i = Am

i and player i’s payo� for any strategy tuple ` ∈ Aa
is

given by

πai (`) = φi (д(`)) −
∑
j,i

`i j · ci j = π
m
i (`) −

∑
j,i

`i j · ci j , (13)

where φ : GN → RN is the network payo� function representing the gross bene�ts from network

formation without taking into account the costs of link formation.

Our �rst result develops a complete characterisation of the Nash equilibria in the consent model

with two-sided link formation costs. Part of this equivalence theorem was already stated without

proof in Gilles and Sarangi (2010) and as stated here is taken from Gilles, Chakrabarti, and Sarangi

(2012). �ere are some preliminaries that need to be developed before stating the main assertion.

De�nition 4.4 Let φ be a network payo� function on player set N and let c : N × N → R+ a link

formation cost structure on N . Furthermore, let Γaφ (c) = (A
a, πa) be the associated consent model with

two-sided link formation costs.

A strategy tuple ` ∈ Aa = Am is non-superfluous in the consent model with two-sided link formation

costs Γaφ = (A
a, πa) if for all pairs of players i, j ∈ N , `i j = 1 if and only if `ji = 1.

We call a non-super�uous strategy tuple ` ∈ Aa that is a Nash equilibrium a non-superfluous Nash
11

�is model of two-sided link formation costs was introduced in Gilles, Chakrabarti, and Sarangi (2006) and developed

further by Gilles and Sarangi (2010) and Gilles, Chakrabarti, and Sarangi (2012).
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equilibrium.

�e main theorem states that in Γaφ (c) the networks that are supported by Nash equilibria are exactly

the strong link deletion proof networks for a network payo� function that takes account of the link

formation costs. For a proof of the next theorem I refer to Appendix A.4.

�eorem 4.5 Let φ be a network payo� function on player set N and let c : N × N → R+ be a link

formation cost structure on N . Furthermore, let Γaφ (c) = (A
a, πa) be the associated consent model with

two-sided link formation costs.

�en for every network д ∈ GN the following three statements are equivalent:

(a) Networkд is supported by a Nash equilibrium of the consent model with two-sided link formation

costs Γaφ (c).

(b) Network д is supported by a non-super�uous Nash equilibrium of the consent model with

two-sided link formation costs Γaφ (c).

(c) Networkд is strong link deletion proof with regard to the network payo� functionφa : GN → RN

given by

φai (д) = φi (д) −
∑

j ∈Ni (д)

ci j (14)

�eorem 4.5 provides a complete and detailed characterisation of the set of all Nash equilibria of the

consent model with two-sided link formation costs. Furthermore, �eorem 4.5 clearly generalises

the insight that the class of M-networks in the basic Myerson model is exactly the class of strong

deletion proof networks under network payo� function φ.

In particular, each Nash equilibrium network is actually supported by a unique non-super�uous

strategy pro�le if the cost structure is non-trivial in the sense that all link formation costs are

positive. Gilles, Chakrabarti, and Sarangi (2012) also discuss that there actually exist super�uous

Nash equilibria if costs of link formation are zero for one of the players.

Example 4.6 (Gilles, Chakrabarti, and Sarangi, 2012)

Consider the binary network formation situation with N = {1, 2} and the network payo� function

given by φ1(д
0) = φ2(д

0) = φ1(д
N ) = 0 and φ2(д

N ) = 1. Link formation costs are given by c12 = 0

and c21 = 1. Hence, we can derive that under two-sided link formation costs that φai (д
0) = 0 as well

as φai (д
N ) = 0, for i = 1, 2.

Clearly, the empty network д0
is both (strong) link deletion proof for the net payo� function φa and

supported by the super�uous Nash equilibrium characterised by `12 = 1 and `21 = 0. Of course, д0
is

also supported as a Nash equilibrium through its non-super�uous strategy pro�le `0
12
= `0

21
= 0 in

(Aa, πa). �

4.3 One-sided link formation costs

It is a natural extension to consider a network formation process under a one-sided cost structure. In

this approach, one of the two linking players acts as the initiator and sends an initiation message to the
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other. If the other player, called the responder , chooses to reciprocate positively, the link materialises;

otherwise, not. �is link formation process has a similar nature as the process considered in Bala

and Goyal (2000), except that here the responder has to consent to the formation of the link, while

in Bala-Goyal’s model this is not required. �ere the initiator can create a link with the respondent

in the absence of consent.

�e decision making process is more complex than that under two-sided link formation costs.

Consequently, the action set has to be constructed di�erently. Following Gilles, Chakrabarti, and

Sarangi (2012), for each player i , we introduce a strategy set given by

Ab
i =

{
(li j , ri j )j,i

�� li j , ri j ∈ {0, 1} } . (15)

�is means that player i chooses to act as an initiator in forming a link with j if she initiates a

message to j indicated as li j = 1. In this case, player j acts as the respondent and responds positively

to this initiative if r ji = 1. On the other hand, player j rejects the initiated link with i if r ji = 0.

�erefore, a link is only established if the initiated link is accepted, i.e., if li j = r ji = 1. �is is

formalised as follows.

Let Ab =
∏

i ∈N Ab
i be the set of such communication pro�les. Given the link formation process

set out above, for any pro�le (l, r ) ∈ Ab
, the resulting network is now given by

дb (l, r ) = {ij ∈ дN | li j = r ji = 1}. (16)

To delineate the one-sided model from the two-sided model, it is preferred to use a di�erent notation

for the incurred link formation costs. Instead, I introduce the function γ : N × N → R+ as the

one-sided link formation cost structure. Here, when i initiates a link with j—represented by li j = 1—i

incurs a cost of γi j > 0, regardless of whether the initialised link is accepted by j or not. On the

other hand, responding to a link initialisation message is costless, i.e., j incurs no cost in responding

to any message `i j sent by i in the link formation process.

For a given network payo� function φ on N this now results in the following net payo� function

for player i:

πbi (l, r ) = φi
(
дb (l, r )

)
−

∑
j,i

li j · γi j . (17)

Formally, let φ be a network payo� function on N and let γ : N × N → R+ be a given one-sided

link formation cost structure. �en we refer to the non-cooperative game in strategic form Γbφ (γ ) =

(Ab , πb ) as the consent model of network formation with one-sided link formation costs.

Nash equilibria of the consent model with one-sided link formation costs. As before, we

can now introduce a non-super�uous strategy tuples in the consent model with one-sided link

formation costs:

De�nition 4.7 Let φ be a network payo� function on N and let γ : N ×N → R+ be a given one-sided

link formation cost structure. Consider the corresponding consent model with one-sided link formation
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costs Γbφ (γ ) = (A
b , πb ).

�en a strategy pro�le (l, r ) ∈ Ab is non-superfluous if for all pairs i, j ∈ N it holds that

li j = 1 implies that r ji = 1 as well as lji = ri j = 0, and (18)

ri j = 1 implies that lji = 1 as well as li j = r ji = 0. (19)

Unlike for the consent model with two-sided link formation costs, each network is no longer

supported by a unique non-super�uous strategy pro�le. Indeed, it depends on who of the two

players involved initiates and who responds in the link formation process.

On the other hand, under a non-super�uous strategy pro�le, only one player bears the establish-

ment cost of each existing link, and every initialisation is responded to positively. As a �rst step

in the analysis of this one-sided approach, I explore the relationship between the Nash equilibria

of the two-sided and the one-sided model. Secondly, I present a full characterisation of the Nash

equilibria of the one-sided model in terms of network stability properties. �ese results are taken

from Gilles, Chakrabarti, and Sarangi (2011).

�e main question to be considered here is whether there is a network payo� function which

would provide equivalence between Nash equilibria of the one-sided model and strong link deletion

proofness with regard to a payo� function in a similar fashion as �eorem 4.5 for two-sided link

formation costs. In particular, I follow e�ciency logic and consider a payo� function which only

assigns link formation costs to the player with the lower cost of link formation. If link formation

costs are equal, a tie-breaking rule is applied.

Let Mi (д) = {j ∈ Ni (д) | γi j < γji or γi j = γji , i < j} ⊂ Ni (д) be the potential links that player

i should �nance based on incurring the lowest link formation costs. �e corresponding payo�

function φb is de�ned for i ∈ N by

φbi (д) = φi (д) −
∑

j ∈Mi (д)

γi j

given the network payo� function φ representing bene�ts without taking into account costs of link

formation. We can show the following implication, which proof is relegated to Appendix A.5.

�eorem 4.8 Let φ be a network payo� function on N and let γ : N × N → R+ be a given one-sided

link formation cost structure. If network д ∈ GN is strong link deletion proof for the net payo� function

φb , then д can be supported by a non-super�uous Nash equilibrium in the consent model with one-sided

link formation costs Γbφ (γ ) = (A
b , πb ).

�e converse of �eorem 4.8 does not hold as shown by the following counter-example.

Example 4.9 Consider the minimal binary network formation situation with N = {1, 2} and

network payo�s given by φ1(д
0) = φ2(д

0) = 0, φ1(д
N ) = 2 and φ2(д

N ) = 10. Link formation costs

are given by γ12 = 5 and γ21 = 7.

Hence for i = 1, 2, φbi (д
0) = 0, φb

1
(дN ) = −3 and φb

2
(дN ) = 3. Clearly, the complete network дN is not

link deletion proof for the network payo� function φb , since player 1 would bene�t from severing

the unique link 12.

23



However, there is a Nash equilibrium of the one-sided consent model Γbφ (γ ) = (A
b , πb ) that supports

the complete network дN : l12 = 0; r12 = 1; l21 = 1; r21 = 0.
12 �

One might expect that a network payo� function that assigns a link initiator role to the player with

the higher marginal net bene�ts as a result of formation of the link in question might resolve the

issue of characterising the supported equilibrium networks in Γbφ (γ ) = (A
b , πb ). Below it is shown

that this is actually not the case.

Example 4.10 Consider a situation with three players, N = {1, 2, 3}. �e following table gives

the bene�ts for each of the three players in the case of the formation of one of only three relevant

networks:

Network д φ1(д) φ2(д) φ3(д)

{12} 10 10 0

{13} 10 0 10

{12, 13} 15 20 20

All other networks generate no bene�ts to any of the three players, i.e., φi (д) = 0 for all other

networks д not listed in the table.

Consider the following one-sided link formation cost structure: γ12 = γ13 = 9, γ21 = 10, γ31 = 10,

and γ23 = γ32 = 10. Within this context, player 1 has the highest marginal net bene�t from forming

links 12 as well as 13, namely φ1({12}) − γ12 = φ1({13}) − γ13 = 1, while the other players have no

positive marginal bene�ts from forming links 12 and 13.

Now, the network {12, 13} is not link deletion proof for the network payo� function that is based

on the property that the player with the highest net marginal bene�t is assumed to �nance the

formation of a link. Indeed, player 1—who has the highest net marginal bene�ts from both links—has

a negative net return from forming network {12, 13} and would prefer to sever one of the two links

to increase her net bene�t to 1.

On the other hand, {12, 13} is supported by a non-super�uous Nash equilibrium strategy pro�le

under one-sided link formation costs with l21 = r12 = 1 and l31 = r13 = 1. �

�ese examples show that the problem of �nding a reasonable payo� function that completely

characterises all Nash equilibria of the one-sided consent model in terms of network stability remains

open. �e issues are such that it can be argued that there is actually no reasonable network payo�

function that characterises all supported equilibrium networks in the consent model under one-sided

link formation costs.

12
Note that in the case of two-sided link formation costs, the cost of link formation is a total of γ12 + γ21 = 7 + 5 = 12,

which clearly makes the complete network дN not being supported by a Nash equilibrium in Γaφ (γ ). �is indicates the

underlying reason why two-sided link formation costs shrink the set of supported networks in comparison with the case

of one-sided link formation costs.
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Multi-stage network formationunder one-sided link formation costs. One can ask whether

certain other approaches can resolve the coordination and free riding issues that are indicated in the

discussion of the converse of �eorem 4.8 above.
13

Here, I consider a two-stage network formation process to restore equivalence between equilibria

of that model under one-sided costs and strong link deletion proofness with respect to some well-

constructed network payo� function. �is is motivated by the fact that o�en sequential decision

making solves coordination problems. With this in mind, consider the following natural two-stage

process:

(i) In the �rst stage, every players i ∈ N initiates links by selecting initiation messages (li j )j,i .

(ii) In the second stage, all players respond to links initiated in the �rst stage and select

(ri j : lji = 1)j,i .

�e question is whether the subgame perfect Nash equilibria of this game are strong link deletion

proof with regard to φb . We show that this is not necessarily the case.

Example 4.11 Reconsider the simple binary linking situation in Example 4.9. We showed earlier

that the complete network дN = {12} is not (strong) link deletion proof for the net payo� function

φb but that there is a Nash equilibrium communication pro�le of the one-sided model that supports

it, namely, l12 = 0; r12 = 1; l21 = 1; r21 = 0.

We now show that in the two-stage network formation process described above, this communication

pro�le is subgame perfect as well. Consider the reduced game in the second stage, given that l12 = 0

and l21 = 1 has been chosen in the �rst stage. In normal form it can now be represented as the

matrix game

r21

r12

0 1

0 0,−7 0,−7

1 2, 3 2, 3

�ere are two Nash equilibria in this game, one of which is r12 = 1 and r21 = 0. �is is exactly the

second part of the indicated communication pro�le. �us, the given communication pro�le is indeed

a subgame perfect equilibrium in the two-stage link formation process. �

�e reason why sequential decision making cannot resolve the coordination problem is that here

the problem stems from costs not being transferable. Complete transferability of costs and bene�ts

would take us into the framework of Jackson and Wolinsky (1996) and, in particular, Bloch and

Jackson (2006, 2007).

13
�is discussion requires knowledge of multi-stage, sequential games and the notion of subgame perfection. �is

discussion can be skipped without any di�culty. For more elaborate discussion of multi-stage and sequential games I

refer to Osborne (2004), Harrington (2008) and Maschler, Solan, and Zamir (2013).
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A formal comparison of one-sided and two-sided link formation costs. Since the two mod-

els that we considered in this section have di�erent philosophical bases, we must make some

simplifying assumptions to enable a more formal comparison. In particular, we have to address how

the two di�erent link formation cost formulations are related. �is simply requires us to formulate

the one-sided cost structure γ in terms of the two-sided cost structure c . Hence, we consider γ to be

a particular functional form of c .

I look at two simpli�ed cases that facilitate this comparison.

Case A: �e initiator bears all. Suppose that the initiator in the model with one-sided costs

bears both his cost and the cost of the responder in the context of the two-sided consent model. So,

initiation is tantamount to bearing the total cost of link formation, i.e., γi j = ci j + c ji for all i , j.

Bene�ts described by φ remain individualised and are not transferable.

In this case, it is quite obvious that the Nash equilibria of the two models are not comparable,

which is shown in the next simple example.

Example 4.12 Consider again a binary link formation situation with N = {1, 2} and φi (д
N ) = 51,

φi (д
0) = 0, i = 1, 2. Moreover, let c12 = c21 = 50. Hence, γ12 = γ21 = 100. �en, дN = {12} is

supported by a Nash equilibria of the two-sided model, namely through `12 = `21 = 1. But there is

no Nash equilibrium in the one-sided model that would support it because no one would be willing

to pay a cost of 100 in order to sustain this link.

Next, modify the situation to let φ1(д
N ) = 12, φ2(д

N ) = 2, φi (д
0) = 0, i = 1, 2 and c12 = c21 = 5.

Hence, γ12 = γ21 = 10. �en, дN = {12} is now supported by a Nash equilibrium of the one-sided

model, namely through l12 = r21 = 1, l21 = r12 = 0. �e strategy supporting this network is not a

Nash equilibrium in the two-sided model. �

Case B: A sunk cost formulation. Next, we consider the case in which the link formation costs

are not transferable and that the initiator has to bear only his own cost. �is corresponds to a

scenario where the costs of the responding party are sunk and, thus, not relevant to the decision

making process.

Hence, we assume thatγi j = ci j for all i , j . In this case, it can be shown that networks supported

by Nash equilibria of the two two-sided model are also supported by some Nash equilibrium of

the one-sided model, while the converse does not hold. For a proof of the next theorem I refer to

Appendix A.6.

�eorem 4.13 Let φ be a network payo� function on player set N and let c : N ×N → R+ a two-sided

link formation cost structure on N .

If a network д ∈ GN is supported by a Nash equilibrium of the consent model with two-sided link

formation costs Γaφ (c), then there exists a non-super�uous Nash equilibrium supporting network д in the

consent model with one-sided link formation costs Γbφ (c), i.e., for one-sided link formation cost structure

γ given by γi j = ci j for all i, j ∈ N .

We show that the converse of �eorem 4.13 does not hold.
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Example 4.14 Consider again the binary link formation situation with N = {1, 2}. Furthermore,

assume now that φ1(д
0) = φ2(д

0) = 0, φ1(д
N ) = 6 and φ2(д

N ) = 4. Let two-sided costs of link

formation be uniform, given by ci j = 5 for all i, j ∈ N .

�e complete network дN = {12} initiated by player 1 is supported by a Nash equilibrium in the

one-sided model for γi j = ci j . But the strategy tuple `12 = `21 = 1 in the two-sided model that

supports this network is not a Nash equilibrium in that model. �

�is discussion shows that one-sided link formation processes require a very careful analysis and do

not necessarily result in very delineated conclusions.

5 Trust and network formation

In this section I review some concepts that try to capture the fundamental idea that “trust builds

networks”. �ese concepts go beyond the approaches that I have reviewed thus far, being Myerson’s

model and its variations as well as the Jackson-Wolinsky approach to incorporate cooperative

conceptions into a network formation se�ing.

I discuss two di�erent implementations of trusting behaviour into network formation. First,

van de Rijt and Buskens (2008) consider the notion of unilateral stability that is founded on the

principle that players a�empt the formation of links even if their correspondents did not signal that

they would necessarily agree to the formation of these links. �us, players follow the rule that one

should certainly try to form links if one expects the correspondent to bene�t from its formation.

�is leads to a re�nement of the class of M-networks.

A very similar conception has been developed by Gilles and Sarangi (2010). Within the consent

model under two-sided link formation costs Gilles and Sarangi (2010) developed a belief-based

stability concept denoted as monadic stability for understanding a purely non-cooperative process of

network formation based on trusting behaviour. Again players are assumed to pursue the formation

of links if they perceive the correspondents to bene�t from their creation. However, monadic

stability is de�ned as a self-con�rming equilibrium (Fudenberg and Levine, 1993) based on these

belief systems, deviating considerably from van de Rijt and Buskens (2008)’s conception of trusting

behaviour.

5.1 Unilateral stability

�e mathematical sociologists van de Rijt and Buskens (2008) proposed a re�nement of the Nash

equilibrium concept that considers expanding a player’s ability to a�ect the network that is formed

in a broader way than allowed through best response rationality underlying the Nash equilibrium

concept. �ey recognised that the multitude of Nash equilibria in the Myerson model is due to a

simple (mis-)coordination problem: Players are indi�erent between proposing or not proposing

a link if the other player actually does not propose the link herself already. �is resulted in a

re�nement of the Nash equilibrium concept that takes account of the idea that players trust that

mutually bene�cial link formation will indeed be pursued by other players.
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De�nition 5.1 Let φ be a network payo� function on N and consider the corresponding Myerson

model Γmφ = (A
m, πm). A network д ∈ GN is unilaterally stable if there exists a strategy pro�le

` ∈ Am in the Myerson model with д(`) = д such that

(i) for all i ∈ N and `′i ∈ A
m
i : πmi (`) > π

m
i (`

′
i , `−i ) (Nash equilibrium condition), and

(ii) for every i ∈ N and every alternative strategy `′i ∈ A
m
i , it holds that

πmi (`
?) > πmi (`)

implies that there is some j ∈ N with `′i j = 1 and `i j = 0 for whom

πmj (`
?) < πmj (`),

where `? ∈ Am is given by `?i = `
′
i , `

?
jk = `jk for j , i , k and `?ji = `

′
i j = 1 for j , i .

A network is unilaterally stable if it is supported through a Nash equilibrium in the Myerson model

under the additional provision that every player can modify her direct neighbourhood provided that

this modi�cation can be constructed with the consent of her chosen neighbours. So, if i’s proposal

would make herself be�er o�, then all newly selected neighbours would have no objections and

would not receive lower payo�s as a consequence of this modi�cation of the network.

Unilateral stability introduces a form of trusting behaviour into the Myerson approach to network

formation under mutual consent. �e consent of any player’s neighbours is reasoned by that player

is conducted in such a way that it re�ects trusting behaviour by that particular player. In some sense

it introduces a bounded form of rationality of any player in her consideration of how other players

respond to changes in her behaviour. As such the notion of unilateral stability can be categorised as

a model of trusting behaviour in network formation under mutual consent.

An alternative de�nition of unilateral stability is also possible as captured in the proposition

below. It re�ects the idea to add trusting behaviour to the M-network concept.

Proposition 5.2 (An alternative de�nition of unilaterally stable networks)

A network д ∈ GN is unilaterally stability if and only if д is an M-network such that for every player

i ∈ N and all link sets h−i ⊂ Li (д) and h+i ⊂ Li (д
N \ д) it holds that either φi (д − h

−
i + h

+
i ) 6 φi (д) or

φi (д − h
−
i + h

+
i ) > φi (д) implies there is some j ∈ N such that ij ∈ h+i and φ j (д − h−i + h

+
i ) < φ j (д).

Unilateral stability is the strongest individualistic or “monadic” network formation concept that

has been proposed in the literature. Indeed, going beyond the unilateral formation of links under

consent as formulated here would actually involve active participation of multiple players.

Next, we turn to discussing some simple properties of unilateral stability.

Proposition 5.3 Let φ be a network payo� function on N and consider the corresponding Myerson

model Γmφ = (A
m, πm). �en the following properties hold:

(a) Every unilaterally stable network is strongly pairwise stable.
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(b) �ere exist strictly pairwise stable networks that are not unilaterally stable.

(c) If the network payo� structure φ is link monotone, then дN ∈ GN is the unique unilaterally

stable network for φ.

I prove all three assertions in Proposition 5.3 in an informal fashion, rather than a rigorous mathe-

matical way.

First, from Proposition 4.1 it follows that every M-network д is strong link deletion proof.

Furthermore, applying the unilateral stability condition to a single link ij ∈ д reduces to the LAP

property. �is immediately shows Proposition 5.3(a).

Next, if the network payo� structure is link monotone, then there are no objections of any player

to add more links to an existing network. Hence, the complete network дN is the only M-network

that satis�es the unilateral stability condition, implying the assertion stated as Proposition 5.3(c).

Finally, to show Proposition 5.3(b), I device an example for the case of three players. �is example

also has an important role to assess the relationship between unilateral stability and other stability

concepts, introduced further down in these lecture notes.

Example 5.4 Here, consider three players N = {1, 2, 3} and a network payo� structure φ given in

the next table.

Network д φ1(д) φ2(д) φ3(д) Stability

д0 = � 0 0 0 Strongly PS

д1 = {12} 0 0 2 Strictly PS

д2 = {13} 0 0 0

д3 = {23} 0 0 0

д4 = {12, 13} -1 0 0

д5 = {12, 23} 0 -1 0

д6 = {13, 23} 0 1 1

д7 = дN 3 3 3 U-stable

Here, д0
is strongly pairwise stable, but is not unilaterally stable. Indeed, player 3 can add both links

13 and 23 to make д6
without objection of the other players.

Furthermore, д1
is strictly pairwise stable and again not unilaterally stable. As before, player 3 can

add links 13 and 23 to move to дN without any objections of the other two players. �is shows

assertion 5.3(b).

Also, it is clear from the table that the complete network дN is unilaterally stable, since it is strong

link deletion proof. Note that in this case дN is strictly pairwise stable as well.

Finally, I refer to Example 5.10 for a detailed discussion of an example in which assertion of Proposi-

tion 5.3(b) is strengthened in the sense that the class of strictly pairwise stable networks is completely

disjoint from the class of unilaterally stable networks. �
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To assess unilateral stability, it is clear that van de Rijt and Buskens (2008) introduce it as an

expression of �rmly methodological individualistic behavioural principles: Players act sel�shly only,

but conjecture that other players will consent to the creation of links that directly bene�t them.

It builds on the hypothesis that players o�er no objections to the formation of links that directly

bene�t them.

However, an alternative interpretation can easily be applied here as well. Indeed, the unilateral

stability concept can be interpreted to be an application of a principle of trusting behaviour: players

trust others to consent to forming links if it does not hurt them. �is is closely akin to the model

of trusting behaviour. An alternative model of trusting behaviour founded on belief systems in

Myerson’s framework is discussed next.

5.2 Monadic stability

Gilles and Sarangi (2010) introduced a belief-based conception of trusting behaviour in the se�ing

of the consent model with two-sided link formation costs. �eir approach imposes minimal informa-

tional requirements. Unlike other models of strategic network formation, players need not be aware

of the payo�s associated with every network. For any given network д ∈ GN to emerge in such a

se�ing, a player is required to know the payo�s associated with any change (creation or deletion)

only involving their own direct links ij ∈ Li (д).

�is results in an amendment of Myerson’s consent game such that, based on their information,

players form simple, myopic beliefs about the direct bene�ts other players will receive from estab-

lishing links with them. According to these myopic beliefs, each player i ∈ N assumes that another

player j ∈ N is willing to form a new link with i if j stands to bene�t from it in the prevailing

network. Similarly i also assumes that j will break an existing link ij in the prevailing network if j

does not bene�t from having this link. �us, in this process player i assumes that all other links in

the prevailing network remain unchanged.

�erefore, these monadic beliefs are indeed “myopic” in the sense that they only pertain to direct

e�ects of the addition or removal of a link in the network. Hence, these beliefs disregard higher

order e�ects on the payo�s of all players in the network due to the addition or removal of such a

link. As such these behavioural standards re�ect a bounded form of rationality in decision making,

implying that the boundedly rational foundation of monadic stability is fundamentally di�erent

from the rational standard imposed by unilateral stability.

Such myopic beliefs essentially capture the idea that network formation primarily occurs between

acquaintances with su�ciently large an amount of information about each other to assess �rst order

e�ects of network changes.
14

�is concept is a normal form implementation of the self-con�rming

equilibrium concept introduced by Fudenberg and Levine (1993) within the se�ing of the Myerson

model and its variations.

One can assess these myopic belief systems as re�ecting a certain form of “con�dence” on

the part of each player to engage in communication to form links with other players that have

14
�at social relations are mainly formed between acquaintances is con�rmed empirically by Wellman, Carrington,

and Hall (1988) using data from the East York area. �is principle also forms the foundation of the model in Brueckner

(2006), who models friendship as building links between players chosen from a given set of acquaintances.
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an obvious (�rst-order) bene�t from the addition of such a link. �is con�dence su�ces to form

non-trivial social networks. As stated, a certain commonality is assumed among the players in order

to formulate such common priors and beliefs on which this con�dence is founded. In this regard

we assume that players are acquaintances and build relationships through beliefs about actions

undertaken by other players.
15

We now formalise these myopic belief systems for the consent model under two-sided link

formation costs.

De�ning monadic stability. �roughout we assume there is a given network payo� function

φ : GN → RN and we impose a two-sided link formation cost structure c = (ci j )i , j ∈N . Based

on this data, consider the corresponding consent model under two-sided link formation costs

Γaφ (c) = (A
a, πa). We can introduce speci�c belief systems in this se�ing that represent the trusting

behavioural principle as discussed above.

De�nition 5.5 Let ` ∈ Aa be an arbitrary communication pro�le resulting in network д = д(`). For

every player i ∈ N we de�ne i’s monadic belief system concerning ` as a communication pro�le

`i? ∈ Aa given by

(i) for every j , i with ij ∈ д let

• `i?ji = 0 if φ j (д − ij) + c ji > φ j (д) and

• `i?ji = 1 if φ j (д − ij) + c ji 6 φ j (д);

(ii) for every j , i with ij < д let

• `i?ji = 0 if φ j (д + ij) − c ji < φ j (д) and

• `i?ji = 1 if φ j (д + ij) − c ji > φ j (д);

(iii) and for all j,k ∈ N with j , i , k let `i?jk = `jk .

A monadic belief system re�ects that a player believes that other players are myopically sel�sh and

will act in their myopic self-interest. Hence, links are consented to if that directly bene�ts the other

player and are refused if deleting that link bene�ts the other player.

Now monadic stability simply requires that each player acts rationally in view of these beliefs.

De�nition 5.6 Let φ and c be given with the corresponding consent model under two-sided link

formation costs Γaφ (c) = (A
a, πa).

(a) A networkд ∈ GN isweaklymonadically stable for (φ, c) if there exists some communication

pro�le ` ∈ Aa with д = д(`) such that for every i ∈ N : `i ∈ A
a
i is a best response to her monadic

beliefs `i?
−i ∈ A

a
−i for payo� function πa ; thus,

πai
(
д(`′i , `

i?
−i )

)
6 πai

(
д(`i , `

i?
−i )

)
(20)

for all `′i ∈ A
a
i .

15
It is clear that this approach is akin to the notion of unilateral stability introduced before. A comparison of monadic

stability with unilateral stability is, therefore, called for. �is is further developed here as well.
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(b) A network д ∈ GN ismonadically stable for (φ, c) if there exists some communication pro�le

` ∈ Aa with д = д(`) such that for every i ∈ N : `i ∈ A
a
i is a best response to her monadic beliefs

`i?
−i ∈ A

a
−i for payo� function πa and player i’s monadic belief system `i? is con�rmed in the

sense that for every j , i it holds that `i?ji = `ji .

Weak monadic stability of a network is founded on the principle that every player i ∈ N anticipates—

as captured by her (monadic) expectations about direct links—that other players will respond

myopically sel�shly to her a�empts to form a link with them. Note that `−i is fully replaced by the

player’s belief system `i?
−i in the standard best-response formulation of Nash equilibrium for player i

and is therefore irrelevant for the decision making process of i .

Monadic stability strengthens the above concept by requiring that the beliefs of each player are

con�rmed in the resulting equilibrium. Hence, monadic stability imposes a self-con�rming condition

on the weakly monadic equilibrium. �is describes the situation that all players are fully satis�ed

with their beliefs; the observations that they make about the resulting network con�rm their beliefs

about the other players’ payo�s. �is amounts to updating one’s initial beliefs. As such, monadic

stability is an implementation of a self-con�rming equilibrium based on the monadic belief system in

the context of consent model with two-sided link formation costs (Fudenberg and Levine, 1993).

To delineate the two monadic stability concepts for networks, we discuss a three player example.

�is example shows that the class of monadically stable networks is usually strictly larger than the

class of the weakly monadically stable networks.

Example 5.7 Consider N = {1, 2, 3} and assume uniform link formation costs with ci j = 1 for all

i, j ∈ N . Let the network payo� function φ be given in the table below:

Network д φ1(д) φ2(д) φ3(д) Stability

д0 = � 0 0 0 Mw

д1 = {12} 0 1 0

д2 = {13} 0 0 3

д3 = {23} 0 0 0

д4 = {12, 13} 3 0 0

д5 = {12, 23} 1 3 3

д6 = {13, 23} 2 2 5 Mw

д7 = дN 3 5 6 Mw and M

�is table identi�es whether the network in question is weak monadically stable—indicated by

Mw—or whether it is monadically stable—indicated by M .

Within this example we now consider some of the networks given and analyse their stability

properties.
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Network д0
: We show that this network is weakly monadically stable for a supporting com-

munication pro�le that is super�uous. Indeed, select `0 = ( (1, 1), (0, 0), (0, 0) ) ∈ Aa
with

д(`0) = д
0 = �. Observe here that player 1 incurs link formation costs with πa

1
(`0) = −2, while

πa
2
(`0) = π

a
3
(`0) = 0. �en we can determine the monadic belief systems for all players as

`1?
0
= (−, (1, 0), (1, 0) )

`2?
0
= ((0, 1),−, (0, 0) )

`3?
0
= ((1, 0), (0, 0),− )

It should be emphasised that in this case player 1 believes that both other players are willing

to make links with her, because there are direct bene�ts from forming such links. However,

the other players believe that player 1 will not a�empt to make a link with them, because she

has no direct (net) bene�ts from doing so. �is refers to a classical coordination problem.

Now we determine that the best responses for all players are given by

• β1

(
`1?

0

)
= (1, 1) is the unique best response to `1?

0
for player 1.

• β2

(
`2?

0

)
= (0, 0) is the unique best response to `2?

0
for player 2.

• β3

(
`3?

0

)
= (0, 0) is the unique best response to `3?

0
for player 3.

�is con�rms thatд0
is indeed weakly monadically stable for `0. However,д0

is not monadically

stable, since in the communication pro�le `0, player 1’s beliefs are not con�rmed. She expects

the other two players to be willing to form links with her, although they do not do so.

Network д5
: �is network is neither weakly monadically stable, nor monadically stable. �e non-

super�uous communication pro�le `5 = ( (1, 0), (1, 1), (0, 1) ) is an obvious candidate to support

this network. For this pro�le we compute that

`1?
5
= (−, (1, 1), (1, 1) )

`2?
5
= ((1, 0),−, (0, 1) )

`3?
5
= ((1, 1), (1, 1),− )

�is results into the following best response con�guration:

• β1

(
`1?

5

)
= (1, 1) is the unique best response to `1?

5
for player 1.

• β2

(
`2?

5

)
= (1, 1) is the unique best response to `2?

5
for player 2.

• β3

(
`3?

5

)
= (1, 1) is the unique best response to `3?

5
for player 3.

From this it is clear that д5
cannot be supported by `5. �is illustrates that weak monadic

stability requires selecting a best response to a speci�c set of beliefs for each player i ∈ N .

Without such a restriction on the beliefs it would be possible to support any strategy as weakly

monadic stable. Moreover, observe that players only form beliefs about the behaviour of their

acquaintances with regard to direct links, making it myopic but realistic. In fact, because of

this, it is possible that monadically stable equilibria do not exist.

33



Finally, we can complete the argument by checking that other communication pro�les can be

ruled out in similar fashion.

Network д6
: We argue that this network is weakly monadically stable as well. We can show that

д6
is supported by the action tuple `6 = ( (0, 1), (1, 1, ), (1, 1) ). Again we compute

`1?
6
= (−, (1, 1), (1, 1) )

`2?
6
= ((1, 1),−, (1, 1) )

`3?
6
= ((0, 1), (1, 1),− )

Note here that player 1 is indi�erent between д6
and д7

in terms of her net payo� πa . �us,

in the computation of `2?
6

we use the bias of player 1 towards having more links rather than

fewer in player 2’s belief system.

�is results into the following best response con�guration:

• β1

(
`1?

6

)
= { (0, 1), (1, 1) } is the set of best responses to `1?

6
for player 1, i.e., (0, 1) and

(1, 1) are both best responses for this player.

• β2

(
`2?

6

)
= (1, 1) is the unique best response to `2?

6
for player 2.

• β3

(
`3?

6

)
= (1, 1) is the unique best response to `3?

6
for player 3.

�is shows that `6 is indeed supported as a weak monadically stable communication pro�le.

On the other hand, д6
is not monadically stable, since the beliefs of player 2 are not con�rmed.

Network д7
: First, we claim that this network is strictly pairwise stable. Strong link deletion

proofness follows trivially from the payo�s listed. Indeed, the net payo�s in other networks

(д0, . . . ,д6
) are at most the net payo� in д7

for all players. Second, strict link addition proofness

is trivially satis�ed since there are no links that are not part of д7 = дN .

Furthermore, the complete network д7 = дN is weakly monadically stable. We claim that д7
is

supported by the only communication pro�le supporting this network, `7 = ( (1, 1), (1, 1, ), (1, 1) ).

We can determine that the monadic belief systems are given by

`1?
7
= (−, (1, 1), (1, 1) )

`2?
7
= ((1, 1),−, (1, 1) )

`3?
7
= ((1, 1), (1, 1),− )

From this we conclude that

• β1

(
`1?

7

)
= { (0, 1), (1, 1) } is the set of best responses to `1?

7
for player 1.

• β2

(
`2?

7

)
= (1, 1) is the unique best response to `2?

7
for player 2.

• β3

(
`3?

7

)
= (1, 1) is the unique best response to `3?

7
for player 3.

So, `7 is indeed a best response pro�le with regard to the generated monadic belief systems.

Hence, д7
is indeed weakly monadically stable.
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Finally, all players’ monadic belief systems are con�rmed here. So, in fact, д7
is monadically

stable.

In this example, it is made clear that the introduced monadic belief systems require only that players

use minimal information about each other’s payo�s to formulate appropriate expectations about

each other’s linking behaviour. Indeed, monadic stability only considers players to use �rst-order

e�ects of forming new links and deleting existing links to formulate their monadic beliefs. �

�is example clari�es the relationship between the notion of weak monadic stability and the monadic

stability concept. Next, I provide a more general characterisation.

Proposition 5.8 Let the network payo� function φ and the link formation cost structure c be given.

Every monadically stable network д ∈ GN for (φ, c) satis�es the following two properties:

(i) д is weakly monadically stable, and

(ii) д is supported by a monadic belief system `д that is non-super�uous in the sense that `дi j = `
д
ji

for all pairs i, j ∈ N .

Proof. Let д ∈ GN be monadically stable and let action tuple `д ∈ Aa
support д as such. Suppose

that ij < д with `
д
i j = 1 and `

д
ji = 0. �en from the property that `

д
i ∈ A

a
i is a best response to the

belief system `
д i?
−i it can be concluded that `

д
i j = 1 implies that `

д i?
ji = 1. But this would then imply

that `
д
ji , `

д i?
ji , violating the monadic stability self-con�rmation condition.

�e reverse of the assertion of Proposition 5.8 is not true. Simple examples can be constructed in

which weakly monadically stable networks exist that satisfy the stated property, but which are not

monadically stable.

A few comments regarding the relationship between weak monadic stability and network-based

stability concepts are in order here. First, weakly monadically stable networks are not necessarily

strong link deletion proof or link addition proof. Second, a network that is strong link deletion proof

as well as link addition proof is not necessarily weakly monadically stable. We refer to network д6
in

Example 5.7, which is weakly monadically stable, but not link addition proof. �e other comparisons

can also be shown by properly constructed counterexamples.

An equivalence result. �e main insight from this approach is that trust indeed builds very

strong networks. �is is exempli�ed by the equivalence of the class of monadically stable and strictly

pairwise stable networks. For a proof I refer to Appendix A.7.

�eorem 5.9 Let the network payo� function φ and the link formation cost structure c = (ci j )i , j ∈N be

given such that ci j > 0 for all i, j ∈ N with i , j. �en a network д ∈ GN is monadically stable for

(φ, c) if and only if д is strictly pairwise stable for the network payo� function φa given by

φai (д) = φi (д) −
∑

i j ∈Li (д)

ci j (21)
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�rough the monadic stability concept we have considered the notion of con�dence—as a form of

mutual trust—into an advanced equilibrium concept, speci�cally designed for network formation.

Con�dence is introduced as an internalised feature into the behaviour of the players in network

formation. �us, trusting behaviour is as such a individualised feature rather than a social normative

phenomenon.

�e strength as well as the weakness of the monadic stability approach is the myopic nature of

the belief systems. Players do not apply very sophisticated reasoning; they only look at the �rst

order e�ects of link formation. Natural future extensions of this line of theoretical research should

explore the possibility of introducing forward looking behaviour to understand how farsightedly

stable networks arise.
16

5.3 A comparison of unilateral and monadic stability

As mentioned in the introduction to this section, unilateral and monadic stability seem to be founded

on the same principles of trusting behaviour: Players a�empt to form links with other players if

they perceive these players to bene�t from these links.

Recall that a network is unilaterally stable if there is no player who can induce changes to the

network based on the belief that other players will consent to these changes if they are not harmful

to them. Note here that unilateral stability assumes a fully rational form of farsightedness in the

decision making process: All proposed changes to the network—as made by a single player—are

fully taken into account by all involved players before consent is granted. �us, unilateral stability

assumes a sophisticated level of rational forecasting by all players, who need to consent to the

proposed changes to the network.

�is implies that unilateral stability is indeed founded on the principle of trusting behaviour.

Implicitly, players are indeed acting on beliefs that other players will act in their self-interest when

confronted with proposed changes to their link sets. As such, unilateral stability is a trust equilibrium

concept.

On the other hand, monadic stability assumes a much less sophisticated form of rational decision

making. Indeed, players are actually assumed to be boundedly rational: Players form monadic beliefs

that only take �rst-order changes to the payo�s of other individualised into account. So, if a player

proposes to add multiple links, her beliefs are founded on payo� changes per addition of a single

link rather than the complete set of links. Beliefs are, thus, founded on a bounded form of reasoning

by these players.

Moreover, only a�er beliefs are formed, all players base their actions on maximising their payo�s

given these boundedly rational monadic beliefs. �ere can arise a build-in mismatch of beliefs and

actual outcomes in the form of realised changes to the network. However, actual actions need to

con�rm the monadic beliefs of players. �is pushes the decision making process from unrealistic to

justi�ed, since these beliefs are observed by the player decision makers.

16
�is can be compared with existing models of farsighted network formation developed in Deroı̈an (2003), Du�a,

Ghosal, and Ray (2005), Page, Wooders, and Kamat (2005), Herings, Mauleon, and Vannetelbosch (2009), Navarro (2014),

Kirchsteiger, Mantovani, Mauleon, and Vannetelbosch (2016), Förster, Mauleon, and Vannetelbosch (2016) and Song and

van der Schaar (2020).
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�erefore, monadic stability is a trust equilibrium concept as well and is designed explicitly

to be based on an embedded form of trusting behaviour in the disguise of belief formation on

trusting principles. �ese trusting principles are not violated due to the con�rmation condition in

the monadic stability concept—in contrast to the weak monadic stability notion.

In summary, monadic stability is founded on a boundedly rational form of trusting behaviour.

�is contrasts with unilateral stability in which all decisions are based on a more farsighted, rational

implementation of similar ideas.

A formal comparison. Next I consider a more technical comparison of the two concepts. From

the discussion above it cannot be expected that the application of monadic stability and unilateral

stability results in exactly the same class of stable network. �e next example shows that these two

conceptions can lead to completely di�erent sets of stable networks.

Example 5.10 Again consider the by-now familiar case of three players N = {1, 2, 3}. Let the

network payo� function φ be given in the table below and assume that link formation is costless,

i.e., ci j = 0 for all i, j ∈ N .

Network д φ1(д) φ2(д) φ3(д) Stability

д0 = � 0 0 0

д1 = {12} 1 1 2 M-stable

д2 = {13} 0 0 0

д3 = {23} 0 0 0

д4 = {12, 13} 0 0 1

д5 = {12, 23} 0 0 1

д6 = {13, 23} 3 3 3 U-stable

д7 = дN 4 2 4

�e table reports the stability properties of the various networks. �ere emerge three interesting

networks to be investigated, namely д1
, д6

and д7 = дN . I discuss these in detail below:

Network д1
: We investigate the stability properties of this network. First, note that д1

is not unilat-

erally stable. Indeed, player 3 prefers to propose the formation of links 13 and 23 to create

network дN , which represents a strict Pareto improvement for all players in N .

Second, network д1
is supported by a non-super�uous communication pro�le that is repre-

sented as `1 = ( (1, 0), (1, 0), (0, 0) ). �is results into a monadic belief system given by

`1?
1
= (−, (1, 0), (0, 0) )

`2?
1
= ((1, 0),−, (0, 0) )

`3?
1
= ((1, 0), (1, 0),− )
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Clearly `1 constitutes a best response pro�le to the given monadic belief system and the

monadic belief system is con�rmed through `1, showing that д1
is supported as a monadically

stable network.
17

Network д6
: First, note that д6

is strongly pairwise stable as well as unilaterally stable. Indeed,

only player 1 has an incentive to add link 12 to form the complete network д7 = дN , which is

rejected by player 2 due to a loss in payo�. �ere are no players who have incentives to sever

any of the two existing links.

Next, д6
is not monadically stable. Indeed, take the non-super�uous communication pro�le

that supports it, given by `6 = ( (0, 1), (0, 1), (1, 1) ). �en the corresponding monadic belief

system is

`1?
6
= (−, (0, 1), (1, 1) )

`2?
6
= ((1, 1),−, (1, 1) )

`3?
6
= ((0, 1), (0, 1),− )

Obviously, the communication pro�le `6 is a best response to the monadic belief system above.

�is implies that д6
is weakly monadically stable. However, it is not monadically stable. Indeed,

player 2 believes that player 1 would pursue the creation of a link with her—as represented by

`2?
12
= 1. �is is not as described by `6; player 1 does not propose a link to player 2 and, as

such, the belief system of player 2 is not con�rmed in the equilibrium communication pro�le.

Network д7 = дN : To conclude the discussion of the situation described in this example, we consider

the complete network д7 = дN , which is uniquely supported by the communication pro�le

`7 = ( (1, 1), (1, 1), (1, 1) ). �e resulting monadic belief systems can now be represented by

`1?
7
= (−, (0, 1), (1, 1) )

`2?
7
= ((1, 1),−, (1, 1) )

`3?
7
= ((1, 1), (1, 1),− )

Obviously, the communication strategy `7
1
= (1, 1) is not a best response to `1?

7
, since player 1

expects player 2 not to form a link with her. �erefore, `7 is not supported as a monadically

stable communication pro�le. �us, д7
is not weakly monadically stable.

Furthermore, this network is neither unilaterally stable; in particular, it is not link deletion

proof. Indeed, player 2 has an incentive to break the link with player 1 to move to network д6
.

�is example clearly shows that the class of unilaterally stable networks can be completely disjoint

from the class of monadically stable networks. In this example, however, the unilaterally stable

network is weakly monadically stable. �is implies that in a unilaterally stable network monadic

beliefs can destabilise the network, leading to unending improvement a�empts by the players in the

network. �us, boundedly rational belief formation can undermine a farsightedly rational foundation

17
Similarly, note that д1

is actually a strictly pairwise stable network. �e equivalence theorem shows that, therefore,

д1
has to be monadically stable.
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for the network; as such, it represents an example of a direct con�ict between farsighted or full and

boundedly rational behaviour. �

5.4 Existence of monadically stable networks

�e question of existence of monadically stable networks is an important one. �e previous discussion

already identi�ed the class of monadically stable networks to be exactly equal to the class of strictly

pairwise stable networks. Obviously, this class is empty for a large collection of network payo�

structures. Here I investigate certain conditions under which the class of monadic networks is

non-empty.

�ese conditions are related to the notion of a network potential as seminally developed by

Chakrabarti and Gilles (2007). �ere it is explored what the consequences are of founding network

payo�s on an underlying link-based payo� function—denoted as a network potential. Network payo�

functions that admit a potential impose a payo� structure in which players assess the value of links

in a similar fashion. It can be shown that for network payo� structures that are founded on such

potentials, there exist strictly pairwise stable networks.

In the subsequent discussion, I summarise the main insights from Chakrabarti and Gilles (2007).

For details of the proofs of the main theorems I also refer to that paper and its appendices. Before

stating the main de�nitions and the resulting properties, I recall the de�nition of two potential

concepts in the context of a non-cooperative game (A, π ) on the player set N as seminally introduced

by Monderer and Shapley (1996).

De�nition 5.11 Let (A, π ) be a non-cooperative game on player set N . �en:

(a) �e game (A, π ) admits an exact potential in the sense of Monderer and Shapley (1996) if

there exists a function P : A→ R such that

πi (a) − πi (bi ,a−i ) = P(a) − P(bi ,a−i ) (22)

for every player i ∈ N , every strategy tuple a ∈ A and every strategy bi ∈ Ai .

(b) �e game (A, π ) admits an ordinal potential in the sense of Monderer and Shapley (1996)

if there exists a function P : A→ R such that

πi (a) > πi (bi ,a−i ) if and only if P(a) > P(bi ,a−i ) (23)

for every player i ∈ N , every strategy tuple a ∈ A and every strategy bi ∈ Ai .

Based on these two notions of game-theoretic potentials, we can now consider how network payo�

structures might be founded on similar constructs.

Network potentials. �ere are two main conceptions of the notion of a potential as a founding

device in the determination of network payo�s. Again we refer to these notions as an “exact potential”

and an “ordinal potential”, following the accepted terminology in the literature. �e next de�nition

introduces these two notions.
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De�nition 5.12 Let φ : GN → RN be a network payo� function.

(a) �enetwork payo� functionφ admits an exact potential if there exists a functionΛ : GN → R

such that

φi (д) − φi (д − ij) = Λ(д) − Λ(д − ij) (24)

for every network д ∈ GN , every player i ∈ N and every link ij ∈ Li (д).

(b) �enetwork payo� functionφ admits an ordinal potential if there exists a functionΛ : GN →

R such that the following conditions hold:

φi (д) > φi (д − ij) if and only if Λ(д) > Λ(д − ij) (25)

φi (д) < φi (д − ij) if and only if Λ(д) < Λ(д − ij) (26)

φi (д) = φi (д − ij) if and only if Λ(д) = Λ(д − ij) (27)

for every network д ∈ GN , every player i ∈ N and every link ij ∈ Li (д).

An exact potential imposes that the network payo� structure exhibits a cardinally uniform way of

how players assess the addition or deletion of a link to a network. It is clear that the admi�ance of

an exact potential is a very strong condition on the network payo� structure. �is is con�rmed by

the following insight from Chakrabarti and Gilles (2007, �eorem 3.3):

Lemma 5.13 A network payo� function φ admits an exact potential if and only if the corresponding

Myerson model Γmφ admits an exact potential in the sense of Monderer and Shapley (1996).

�e admi�ance of an ordinal potential in a network payo� structure imposes a uniform assessment of

deleting and adding links to networks by all players in purely ordinal terms. Although this property

is signi�cantly weaker than the admi�ance of an exact potential, it remain a rather demanding

condition on the network payo� structure. �e next lemma makes clear that there is again a

relationship with the notion of an ordinal potential in the sense of Monderer and Shapley (1996).

�e next lemma is stated as �eorem 4.3 in Chakrabarti and Gilles (2007). For a proof I refer to that

source.

Lemma 5.14 Let φ be some network payo� structure. If the corresponding Myerson model Γmφ admits

an ordinal potential in the sense of Monderer and Shapley (1996), then φ admits an ordinal potential.

�e reverse of the assertion stated in Lemma 5.14 is not true, as shown in Chakrabarti and Gilles

(2007, Example 4.4).

Properties of network payo� structures that admit potentials. Using the introduced notions

of game-theoretic and network potentials, we can now distinguish three essential classes of network

payo� structures. First, those network payo� structures that admit an exact potential; second, those

network payo� structures for which the corresponding Myerson game admits an ordinal potential;
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and, �nally, those network payo� structures that admit an ordinal potential. Each of these classes is

larger than the previous.

�e next propositions collect some properties of the third class, namely those network payo�

structures that admit an ordinal potential. For proofs of these assertions I again refer to Chakrabarti

and Gilles (2007).

Proposition 5.15 Let φ be some network payo� structure that admits an ordinal potential Λ. �en

the following properties hold:

(i) �ere exists at least one pairwise stable network.

(ii) �e sets of strongly pairwise stable and strictly pairwise stable networks coincide.

�e class of network payo� structures for which the corresponding Myerson game admits an ordinal

potential is particularly interesting. Indeed, Chakrabarti and Gilles (2007, �eorem 5.7) show that

for this class of network payo� structures there exist strictly pairwise stable networks. I state for

completeness the complete assertion:

Proposition 5.16 Let φ be a network payo� function for which the corresponding Myerson model Γmφ
admits an ordinal potential in the sense of Monderer and Shapley (1996). �en there exists at least one

strictly pairwise stable network for φ.

�is property gives rise to the main conclusion regarding the existence of a monadically stable

network. Indeed, the admi�ance of an ordinal potential in the Myerson model gives rise to the

existence of a strictly pairwise stable network, which in turn is monadically stable due to the

fundamental equivalence theorem. As a consequence, we can formulate the following main existence

theorem:

�eorem 5.17 Let φ : GN → RN be a network payo� structure and let c : N × N → R+ be a link

formation cost structure. If the corresponding consent model with two-sided link formation costs Γaφ (c)

admits an ordinal potential in the sense of Monderer and Shapley (1996), then there exists at least one

monadically stable network for (φ, c).

6 Correlated network formation

�e previous section focussed mainly on the internalisation of trust in the behaviour of players

to result into so-called “trusting behaviour” in link formation. We chose to internalise trusting

behaviour in the form of belief systems (monadic stability) or through stability concepts themselves

(unilateral stability). However, there is rather di�erent an approach possible in which trusting

behaviour is explicitly modelled through an externally determined institutional arrangement. �ese

institutional arrangements are implemented collectively and are endowed with a form of collectively

accepted self-enforcement.

In my discussion I mainly considered behavioural rules that can be viewed as being part of a

trusted governance system. All players are assumed to be embedded in such a governance system,

expressing this in the formulated monadic stability concept as embedded monadic belief systems.
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Hence, we use game theoretic concepts to give this embeddedness an explicit, institutional form as

a generally accepted behavioural rule, to behave according to the stated monadic belief system.

Correlation devices. Next, I turn to a much more explicit conception of behavioural sociality.

One can model guiding behavioural norms also as being external to the players, rather than fully

internalised—as is the case for the notion of monadic belief systems. �is refers to the possibility to

let external “devices” guide and coordinate decision-making in a game theoretic se�ing. In particular,

one can consider the question: “Can external guidance let decision makers achieve a higher payo�

than that is achieved through the set of supported Nash equilibria?”

A seminal study by Aumann (1974) introduced an innovative way to exactly introduce a formal

way to establish mutually bene�cial coordination among players. �ese external arrangements are

denoted as correlation devices. �e basic idea is that the decisions made by players are in�uenced by

things that are external to the decision problem itself, but are situated in their immediate surrounding.

�e classical example is that of a tra�c light.
18

�e game theoretic representation is a form of the Game of Chicken as explored extensively in

the literature. Two drivers approach a road crossing. At the crossing, each driver can either “stop”

(action S) or “continue” (action C). If both continue there will result a crash; if both stop, both look

foolish and need to coordinate their passing through prolonged negotiation (with hand gestures);

and if one stops and the other continues, there is regret of the stopper and maximal payo� to the

one who continues. �e resulting payo�s can be captured by the following game-theoretic payo�

matrix:

S C

S 5,5 2,7

C 7,2 0,0

�ere result three Nash equilibria in mixed strategies here, namely one driver stops and the other

continues—resulting in payo�s (7, 2) and (2, 7) depending on who actually stops—and the case in

which both players stop or continue with equal probability—resulting into the expected payo� vector(
3

1

2
, 3 1

2

)
. �e la�er includes a probability of

1

4
of a crash, due to both players continuing.

Now consider that there is an outside regulator—represented as a correlation device—added to

this situation in the form of a tra�c light. �e most important assumption of this arrangement is

that both drivers are fully informed about what fraction of time the tra�c light is in what colour.

Hence, both drivers know the probability distribution that is implemented through the tra�c light.

We investigate two tra�c light arrangements:

• First, consider that with equal probability the tra�c light gives a red light to one player and a

green light to the other. Adopting the normal rule to stop for red and to continue for green,

we actually coordinate between the two Nash equilibria (S,C) and (C, S), resulting into an

18
�e following discussion is mainly based on the excellent account of correlated equilibrium in Chapter 9 of Maschler,

Solan, and Zamir (2013). I recommend the interested reader to look at their presentation.
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expected payo� computed as

Eπ1 =
1

2
(7, 2) + 1

2
(2, 7) =

(
4

1

2
, 4 1

2

)
.

Here there no positive probability of a crash and both drivers are reasonably content with

their expected payo�.

Would this tra�c light be self-enforceable within the given social decision situation? We need

to check whether this tra�c light arrangement is indeed bene�cial to both player drivers if it

is implemented as suggested by these two drivers. Obviously, if any of these drivers deviates

from the recommendation, while the other follows it, there is a crash—resulting in zero payo�s.

So, the suggested arrangement is indeed self-enforcing.

• In comparison with our regular tra�c light, we can even increase the expected payo� by

introducing a more complicated coordination device. Indeed, consider a tra�c light that can

stop both drivers simultaneously with a given probability. In that case, the drivers negotiate

themselves and proceed with caution. So, the tra�c light can give both drivers simultaneously

the signal “red”, at which both drivers are suggested to stop and proceed with caution.

�is allows the mixing of three outcomes in this decision situation. Suppose now that the

tra�c light gives both drivers simultaneously “red” with probability
1

2
and one driver “red” and

the other driver “green” with equal probabilities
1

4
.
19

We can depict the resulting probability

distribution over all outcomes in a probability matrix:

S C

S
1

2

1

4

C
1

4
0

�e resulting expected payo�s can now be computed as

Eπ2 =
1

2
(5, 5) + 1

4
(7, 2) + 1

4
(2, 7) =

(
4

3

4
, 4 3

4

)
�

(
4

1

2
, 4 1

2

)
= Eπ1.

Again we can ask whether this tra�c light is self-enforcing. If one driver receives “red”, he

knows that the other driver receives “red” with probability
2

3
and “green” with probability

1

3
.

So, if he continues there is a crash with probability
1

3
and he receives an expected payo� of

1

3
· 0+ 2

3
· 7 = 4

2

3
< 4

3

4
, the la�er being the expected payo� if he follows the recommendation of

the tra�c light. Again, we conclude that the tra�c light arrangement is indeed self-enforcing;

no player has an incentive to deviate from the provided arrangement and recommendations.

One can ask whether this reasoning can be extended to even higher payo�s. Indeed, Aumann

showed that this is the case up to payo� level 5. �e arrangement that both drivers always face a

red light—that is, “red” with probability 1—is, of course, not self-enforcing.

19
�is means that both drivers get private recommendations from the tra�c light; they do not know what the colour to

the other driver is. �is is the usual arrangement in modern tra�c law.
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Using correlation devices in network formation. Correlation devices can also be introduced

in the processes of network formation. I return to the network formation process under consent

that we discussed thus far and consider how external correlation devices in the form of external

recommender systems can guide players to form “good” networks. We �rst take a look at a by-now

familiar network formation situation with three players.

Example 6.1 As before, let N = {1, 2, 3} be the set of three players. Also, we choose φ to be a

minor modi�cation of the network payo� function studied in Example 5.10, given in the table below,

and again we assume that link formation is costless, i.e., ci j = 0 for all i, j ∈ N .

As reported in the table below, there are actually �ve M-networks, namely all strong link deletion

proof networks given byM = {д0,д1,д2,д3,д6}. �ese �ve M-networks correspond only to three

payo� vectors, namely (0, 0, 0), (1, 1, 2) and (3, 3, 3).

Network д φ1(д) φ2(д) φ3(д) M-network

д0 = � 0 0 0 M

д1 = {12} 1 1 2 M

д2 = {13} 0 0 0 M

д3 = {23} 0 0 0 M

д4 = {12, 13} 8 8 1

д5 = {12, 23} 0 0 1

д6 = {13, 23} 3 3 3 M

д7 = дN 4 2 4

�e main question I consider here is: Can we introduce a correlation device in this network formation

situation that results in higher expected payo�s than those from the high-paying M-network д6
?

Indeed, д6
is the most obvious M-network that the players can aim for. �erefore, the payo� vector

(3, 3, 3) acts as a benchmark in relationship to any correlation device.

Consider an external recommender system based on the three networks д4
, д6

, and д7 = дN . In

particular, assume that this correlation device recommends (i) all three players to execute signalling

strategy `a = ( (1, 1), (1, 0), (1, 0) ) resulting in network д4
with probability α = 1

12
; (ii) the signalling

strategy `b = ( (0, 1), (0, 1), (1, 1) ) resulting in network д6
with probability β = 2

3
; and (iii) the

signalling strategy `c = ( (1, 1), (1, 1), (1, 1) ) resulting in network д7 = дN with probability γ = 1

4
.

�e expected payo�s under this system are now given by

Eπ (`) = α · φ(д4) + β · φ(д6) + γ · φ(д7)

= 1

12
· φ(д4) + 2

3
· φ(д6) + 1

4
· φ(д7) =

(
3

2

3
, 3 1

6
, 3 1

12

)
� (3, 3, 3) = φ(д6)

Hence, coordinating the link building actions through this recommender system results into a strict
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Pareto improvement over the best M-network. It remains to show that all three players have no

incentives to deviate from the recommended correlated strategy:

• Player 1: �e only plausible alternative signalling strategy is to play `1 = (1, 1) to achieve the

high paying network д4
. �is results actually in no changes to the recommended networks,

due to the recommended strategies executed by the two other players under the selected

correlation device. Hence, player 1 has no gain from deviating from the recommended strategy.

• Player 2: �e only plausible alternative signalling strategy for this player is to execute `′
2
=

(1, 0) to establish network д4
. But this results in a lower expected payo� for player 2 if the

other players follow the recommended strategies in ` :

Eφ2

(
`′

2

)
= 1

12
· φ2(д

4) + 2

3
· φ2(д

2) + 1

4
· φ2(д

4) = 1

3
· 8 + 2

3
· 0 = 2

2

3
< 3

1

6
= Eπ2 (`) .

�is recommender system uses two non-M-networks, д4
and д7 = дN . �erefore, this correlation

device is founded on considerations outside the realm of the stability concepts that we have consid-

ered thus far. It shows that ine�cient networks and non-stable networks play a role in network

formation processes. �

�e example above shows just a single application of the correlated equilibrium concept to network

formation analysis. �e application of this concept opens the way to further exploration, even

though the multitude of correlated equilibria is discouraging. Indeed, Aumann showed that the

collection of expected payo� vectors supported by correlated equilibria includes the convex hull of

all Nash equilibrium payo� vectors. �is is rather daunting and discouraging from the perspective

that correlation will not lead to a smaller class of supported networks.

However, the main research question that is still open is whether there exists a speci�c class of

correlation devices that could guide players to highly productive networks. �roughout our history,

humans have in fact found ways to implement very e�ective correlation devices to build e�ective and

high-paying networks. �is includes recommender systems such as job recommendation referrals

and socio-economic recommendations through friendship networks. Further exploration of these

systems from a Aumannian perspective is required to develop a theory that interprets these practical

systems as correlation devices.
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Deroïan, F. (2003): “Farsighted strategies in the formation of a communication network,” Economics
Le�ers, 80, 343–349.

Dutta, B., S. Ghosal, and D. Ray (2005): “Farsighted network formation,” Journal of Economic
�eory, 122(2), 143–164.

Dutta, B., and S. Mutuswami (1997): “Stable Networks,” Journal of Economic Theory, 76, 322–344.

Förster, M., A. Mauleon, and V. Vannetelbosch (2016): “Trust and manipulation in social

networks,” Network Science, 4, 216–243.

Fudenberg, D., and D. K. Levine (1993): “Self-con�rming Equilibrium,” Econometrica, 61, 523–545.

Gilles, R. P., S. Chakrabarti, and S. Sarangi (2006): “Social Network Formation with Consent:

Nash Equilibrium and Pairwise Re�nements,” Working paper, Department of Economics, Virginia

Tech, Blacksburg, VA.

(2011): “Myopic and Farsighted Stability in Network Formation under Consent,” Working

Paper, �een’s University Management School, Belfast, UK.

(2012): “Nash Equilibria of Network Formation Games under Consent,” Mathematical Social
Sciences, 64(2), 159–165.

Gilles, R. P., and S. Sarangi (2010): “Network Formation under Mutual Consent and Costly

Communication,” Mathematical Social Sciences, 60, 181–185.

Golub, B., and Y. Livne (2010): “Strategic Random Networks and Tipping Points in Network

Formation,” Working Paper, Stanford Graduate School of Business, Stanford, CA.

Goyal, S., and S. Joshi (2006): “Unequal Connections,” International Journal of Game Theory, 34,

319–349.

Harari, Y. N. (2014): Sapiens: A Brief History of Humankind. Vintage Books, London, UK.

Harrington, J. (2008): Games, Strategies and Decision Making. Worth Publishers, New York, NY.

Herings, P. J. J., A. Mauleon, and V. Vannetelbosch (2009): “Farsightedly stable networks,” Games
and Economic Behavior, 67, 526–541.

Jackson, M. O. (2008): Social and Economic Networks. Princeton University Press, Princeton, NJ.

Jackson, M. O., and B. W. Rogers (2005): “�e Economics of Small Worlds,” Journal of the European
Economic Association, 3, 617–627.

46



(2007): “Meeting Strangers and Friends of Friends: How Random are Social Networks?,”

American Economic Review, 97, 890–915.

Jackson, M. O., and A. van den Nouweland (2005): “Strongly Stable Networks,” Games and
Economic Behavior, 51, 420–444.

Jackson, M. O., and A. Watts (2002): “�e Evolution of Social and Economic Networks,” Journal of
Economic Theory, 106, 265–295.

Jackson, M. O., and A. Wolinsky (1996): “A Strategic Model of Social and Economic Networks,”

Journal of Economic Theory, 71, 44–74.

Joshi, S., A. S. Mahmut, and S. Sarangi (2020): “Network formation with multigraphs and strategic

complementarities,” Journal of Economic �eory, doi:10.1016/j.jet.2020.105033.

Kirchsteiger, G., M. Mantovani, A. Mauleon, and V. Vannetelbosch (2016): “Limited Farsight-

edness in Network Formation,” Journal of Economic Behavior & Organization, 128, 97–120.

Maschler, M., E. Solan, and S. Zamir (2013): Game�eory. Cambridge University Press, Cambridge,

MA.

Monderer, D., and L. S. Shapley (1996): “Potential Games,” Games and Economic Behavior, 14,

124–143.

Myerson, R. B. (1977): “Graphs and Cooperation in Games,” Mathematics of Operations Research, 2,

225–229.

(1980): “Conference Structures and Fair Allocation Rules,” International Journal of Game
Theory, 9, 169–182.

(1991): Game Theory: Analysis of Con�ict. Harvard University Press, Cambridge, MA.

Navarro, N. (2014): “Expected fair allocation in farsighted network formation,” Social Choice and
Welfare, 43, 287–308.

Newman, M. E. J. (2010): Networks: An Introduction. Oxford University Press, Oxford, UK.

Osborne, M. J. (2004): An Introduction to Game �eory. Oxford University Press, New York, NY.

Page, F. H., M. H. Wooders, and S. Kamat (2005): “Network and Farsighted Stability,” Journal of
Economic �eory, 120, 257–269.

Seabright, P. (2010): �e Company of Strangers: A Natural History of Economic Life. Princeton

University Press, Princeton, New Jersey, revised and enlarged edn.

Song, Y., and M. van der Schaar (2020): “Dynamic network formation with foresighted agents,”

International Journal of Game Theory, doi:10.1007/s00182-020-00714-4.

van de Rijt, A., and V. Buskens (2008): “A Nash Equilibrium Re�nement for Myerson’s Network

Formation Game,” ISCORE paper 230, University of Utrecht, Utrecht, the Netherlands.

van den Nouweland, A. (1993): “Games and Graphs in Economic Situations,” Ph.D. thesis, Tilburg

University, Tilburg, �e Netherlands.

(2004): “Models of Network Formation in Cooperative Games,” in Group Formation in
Economics: Networks, Clubs, and Coalitions, ed. by G. Demange, and M. Wooders, chap. 2. Cambridge

University Press, Cambridge, United Kingdom.

47



Wellman, B., P. Carrington, and A. Hall (1988): “Networks as Personal Communities,” in Social
Structures: A Network Approach, ed. by B. Wellman, and S. Berkowitz. Cambridge University Press,

Cambridge, MA.

48



A Proofs of the main theorems

A.1 Proof of �eorem 3.2.

If: Let φ be convex on D(φ). Obviously from the de�nitions and the discussions it follows that

Ds (φ) ⊂ D(φ). �us, we only have to show that D(φ) ⊂ Ds (φ).
Now let д ∈ D(φ). �en for every player i ∈ N and link ij ∈ Li (д) it has to hold that φi (д) > φi (д−ij)
due to link deletion proofness ofд. In particular, for any link seth ⊂ Li (д) :

∑
i j ∈h[φi (д)−φi (д−ij) ] >

0. Since φ is convex on D(φ) and д ∈ D(φ), it follows that φi (д) > φi (д − h) for every link set

h ⊂ Li (д). In other words, д is strong link deletion proof, i.e., д ∈ Ds (φ).

Only if: Assume that D(φ) = Ds (φ). Suppose further to the contrary that the payo� structure φ is

not convex on D(φ). �en there exists some network д ∈ D(φ) and some player i ∈ N such that for

some link set h ⊂ Li (д) we have that

∑
i j ∈h[φi (д) − φi (д − ij) ] > 0 as well as φi (д) < φi (д − h). But

then this implies straightforwardly that player i would prefer to sever all links in h, i.e., д < Ds (φ).
�us, д cannot be strong link deletion proof giving us the necessary contradiction.

�is completes the proof of the assertion of �eorem 3.2.

A.2 Proof of �eorem 3.5.

Assertion (a) is trivial and a proof is therefore omi�ed.

Proof of (b).

If: Let φ be discerning onA(φ). Suppose that д is LAP. Furthermore, assume that i, j ∈ N with ij < д
are such that φi (д + ij) > φi (д). Now, if φ j (д + ij) = φ j (д), then by de�nition of φ being discerning,

φi (д + ij) > φi (д). �is contradicts the hypothesis that д is LAP. �us, φ j (д + ij) < φ j (д), con�rming

that д is indeed ?-LAP.

Only if: Suppose that φ is not discerning on A(φ). �en there exists some network д that is LAP

and for some i, j ∈ N with ij < д it holds that φi (д + ij) = φi (д) as well as φ j (д + ij) = φ j (д). But

this immediately implies that д can in fact not be ?-LAP, since the link ij should be in д for it to be

?-LAP. �is is a contradiction.

Proof of (c).

If: Suppose that φ is uniform on A?(φ) and take some д ∈ A?(φ). Assume that i, j ∈ N with ij < д.

�en �rst suppose that

φi (д) 6 φi (д + ij). (28)

�en by д being ?-LAP it has to hold that

φ j (д) > φ j (д + ij). (29)

But also by uniformity of φ it has to hold that

φ j (д) 6 φ j (д + ij). (30)

But (29) is in direct contradiction to (30). �us, we conclude that (28) cannot hold. �erefore, for any

ij < д it has to hold that φi (д) > φi (д + ij) as well as φ j (д) > φ j (д + ij). Hence, we conclude that д is

actually SLAP, i.e., д ∈ As (φ).

Only if: Assume that As (φ) = A?(φ). Now take д ∈ A?(φ) to be ?-LAP. �en from д being SLAP,

it follows that φi (д) > φi (д + ij) as well as φ j (д) > φ j (д + ij). �is implies that φ indeed has to be

uniform for д.
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�is proves the assertion of �eorem 3.5.

A.3 Proof of �eorem 4.1

First, we show assertion (a).

Suppose that there is an M-network д ∈ GN supported by a Nash equilibrium strategy pro�le

` ∈ Am
that is not strong link deletion proof. �en there is some i ∈ N and hi ⊂ Li (д) with

φi (д −hi ) > φi (д). But then player i can modify his linking strategy as `′i j = 0 if ij ∈ hi and `′i j = `i j .

�en д(`′i , `−i ) = д−hi implying that πmi (`
′
i , `−i ) > π

m(`). �erefore, ` cannot be a Nash equilibrium

in (Am, πm). �is is a contradiction, showing that M-networks are strong link deletion proof.

Next, let д ∈ Ds (φ) be a strong link deletion proof network for the network payo� function φ
on N . Suppose that д is not an M-network. �en the corresponding signalling tuple `д—where

`
д
i j = 1 if ij ∈ д and `

д
i j = 0 otherwise—is not a Nash equilibrium strategy tuple in the Myerson

model Γmφ . Hence, there is a player i ∈ N and an alternative strategy `i ∈ Ai with `i , `
д
i such

that πmi (`
д) < πmi (`i , `

д
−i ). If we denote by h + i = {ij | `

д
i j = 1 and `i j = 0}, then it is clear

that д(`i , `
д
−i ) = д − hi ⊂ Li (д). Using the de�nition of the Myerson payo� function πm , we have

established that φi (д) < φi (д − hi ), which contradicts the hypothesis that д is strong link deletion

proof.

To show assertion (b), suppose that φ is link monotone. Take any network д ∈ GN and construct a

strategy pro�le `д ∈ Am
by `

д
i j = 1 if and only if ij ∈ д, for all i, j ∈ N . It is easy to see that `д is

indeed a Nash equilibrium in (Am, πm) due to φ being link monotone: For any i ∈ N , any deviation

`i from `
д
i induces the link set Li

(
д(`i , `

д
−i )

)
⊆ Li (д) for i . �is implies by link monotonicity that

πmi (`i , `
д
−i ) = φi

(
д(`i , `

д
−i )

)
6 φi (д) = π

m(`д).

A.4 Proof of �eorem 4.5.

(a) implies (c): Let `? be an arbitrary Nash equilibrium in (Aa, πa). �en denote д? = дm(`?) =
{ij ∈ дN | `?i j = `

?
ji = 1}. We show that д? is strong link deletion proof for the derived network

payo� function φa .

Suppose player i deletes a certain link set hi ⊂ Li (д
?). De�ne `i ∈ Aa

i as `i j = 1 if ij ∈ д? − hi
and `i j = 0 for ij < д? − hi . �en by `? being a Nash equilibrium in (Aa, πa) it follows that

дm(`i , `
?
−i ) = д

? − hi and πai (`
?) > πai (`i , `

?
−i ). Hence,

φai (д
?) = φi (д

?) −
∑

j ∈Ni (д?)

ci j = π
a
i (`

?) +
∑

k : `?ik=1,`?ki=0

cik

> πai (`
?) > πai (`i , `

?
−i ) = φi (д

m(`i , `
?
−i )) −

∑
k,i

`ik · cik

= φi (д
? − hi ) −

∑
k ∈Ni (д?−hi )

cik = φ
a
i (д

? − hi ).

�is proves that д? is strong link deletion proof for φa .

(c) implies (b): Suppose that д? ⊂ дN is a strong link deletion proof network for φa . We show that

it is supported by a non-super�uous Nash equilibrium strategy in (Aa, πa). Consider the unique

non-super�uous strategy pro�le `? ∈ Aa
such that дm

(
`?

)
= д?. We proceed to show that `? is a

Nash equilibrium in (Aa, πa) and `?i j = 1 if and only if ij ∈ д?. Indeed,

πai (`
?) = φi (д

m(`?)) −
∑
k,i

`?ik · cik = φi (д
?) −

∑
k ∈Ni (д?)

cik = φ
a
i (д

?).

Next, for some player i consider some deviation `i , `
?
i . De�ne hi = {ik ∈ д

? | `ik = 0}. �en,
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дm(`i , `
?
−i ) = д? − hi . Since д? is strong link deletion proof with respect to φa , it follows that

φai (д
? − hi ) 6 φ

a
i (д

?). �us,

πai (`i , `
?
−i ) = φi (д

m(`i , `
?
−i )) −

∑
k,i

`ik · cik

= φi (д
? − hi ) −

∑
k ∈Ni (д?−hi )

cik −
∑

k : `ik=1,`?ki=0

cik

6 φi (д
? − hi ) −

∑
k ∈Ni (д?−hi )

cik

= φai (д
? − hi ) 6 φ

a
i (д

?) = πai (l
?).

�is proves that the non-super�uous signal pro�le `? is indeed a Nash equilibrium.

Trivially (b) implies (a), which proves the assertion and completes the proof of �eorem 4.5.

A.5 Proof of �eorem 4.8

Letд? be strong link deletion proof under the net payo� functionφb . Forд?, de�ne a non-super�uous

communication pro�le λ? = (l?, r?) ∈ Ab
as follows:

(i) l?i j = r
?
ji = 1 if ij ∈ д? and γi j < γji , or

(ii) l?i j = r
?
ji = 1 if ij ∈ д?, γi j = γji and i < j, or

(iii) l?i j = r
?
ji = 0 if ij < д?.

Obviously, дb
(
l?, r?

)
= д? and

πbi (λ
?) = φi

(
дb (λ?)

)
−

∑
j,i

l?i j · γi j = φi (д
?) −

∑
j ∈Mi (д?)

γi j = φ
b
i (д

?).

Now, for player i ∈ N consider an arbitrary deviation λ̂i =
(
l̂i , r̂i

)
,

(
l?i , r

?
i
)
= λ?i . In any such

deviation, no new links will be formed because if ij < д?, it follows that l?ji = r?ji = 0. However,

links in i’s neighbourhood link set Li (д
?) can be deleted. Hence, let дb

(
λ̂i , λ

?
−i

)
= д? − hi where

hi ⊂ Li (д
?).

We prove that j ∈ Ni (д
? − hi ) and

[
γi j < γji or γi j = γji , i < j

]
implies that l̂i j = 1. In other words,

j ∈ Mi (д
? − hi ) ⊂ Ni (д

? − hi ) implies that l̂i j = 1.

Now, assume by contradiction that for some j ∈ Mi (д
? − hi ) : l̂i j = 0. Now,

j ∈ Ni (д
? − hi ) ⇔ l̂i j = 1 and r?ji = 1 or r̂i j = 1 and l?ji = 1. (31)

But l?ji = 1 implies by construction that γi j > γji or γi j = γji , i > j. Furthermore, r?ji = 1 implies by

construction that γi j < γji or γi j = γji , i < j. Since l̂i j = 0, by (31), it follows that r̂i j = l
?
ji = 1 which

implies that γi j > γji or γi j = γji with i > j . �is contradicts j ∈ Mi (д
? −hi ) completing the proof of

the claim stated above.

Now, the proven claim implies that∑
j ∈Mi (д?−hi )

γi j 6
∑

j ∈Ni (д?−hi )̂

li j · γi j 6
∑
j,i

l̂i j · γi j . (32)
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Hence,

πbi

(
λ̂i , λ

?
−i

)
= φi

(
дb (λ̂i , λ

?
−i )

)
−

∑
j,i

l̂i j · γi j = φi
(
д? − hi

)
−

∑
j,i

l̂i j · γi j

6 φi
(
д? − hi

)
−

∑
j ∈Mi (д?−hi )

γi j = φ
b
i (д

? − hi )

6 φbi (д
?) = πbi

(
l?, r?

)
.

�e �rst inequality follows from (32) and the second follows from the fact that д? is strong link

deletion proof with respect to φb . �is completes the proof of �eorem 4.8.

A.6 Proof of �eorem 4.13

Let д? be supported by a Nash equilibrium signalling pro�le `? ∈ Aa
in the consent model with two-

sided link formation costs (Aa, πa). We now construct a non-super�uous strategy tuple

(
l̂, r̂

)
∈ Ab

in the consent model with one-sided link formation costs such that дb
(
l̂, r̂

)
= д? and

(
l̂, r̂

)
is a

Nash equilibrium in (Ab , πb ).
From �eorem 4.5, we can assume without loss of generality that `? ∈ Aa

is non-super�uous. Given

`?, we de�ne λ̂ =
(
l̂, r̂

)
∈ Ab

by

(i) l̂i j = r̂ ji = 1 and l̂ji = r̂i j = 0 if and only if `?i j = `
?
ji = 1, and either ci j < c ji , or ci j = c ji

with i < j .

(ii) l̂i j = l̂ji = r̂i j = r̂ ji = 0 if and only if `?i j = `
?
ji = 0.

It follows immediately that λ̂ =
(
l̂, r̂

)
is a non-super�uous communication pro�le in Ab

supporting

дb
(
l̂, r̂

)
= д?.

It remains to be shown that λ̂ is a Nash equilibrium of the consent model with one sided link

formation costs. We sketch the proof of this assertion.

Now, if λ̂ is not a Nash equilibrium, then it has to be because some player prefers to delete one or

more of her links. Also, any link delivers the same bene�t to the player as under two-sided link

formation costs, while it would cost no more to establish the link. �us, preferring to keep a link

under two-sided link formation costs, implies that the player would prefer to keep the link under

one-sided link formation costs. Mathematical details of this argument are le� to the reader.

�is completes the proof of �eorem 4.13.

A.7 Proof of �eorem 5.9

We �rst develop some simple auxiliary insights for weakly monadically stable networks. Suppose

that д ∈ GN is weakly monadically stable relative to the data φ and c = (ci j )i , j ∈N . �en there exists

some action tuple
ˆ` ∈ Aa

such that д = д( ˆ`) and for every player i ∈ N :
ˆ`i ∈ A

a
i is a best response

to the monadic belief system
ˆ`i?
−i ∈ A

a
−i for the payo� function πa .

For this se�ing we state two auxiliary results.

Lemma A.1 If ˆ`i?ji = 0 and ci j > 0, then `i j = 0 is the unique best response to ˆ`i?
−i .

Proof. Clearly, if player i selects `i j = 1, i only incurs strictly positive costs ci j > 0 and no bene�ts.

�is implies that player i makes a loss from trying to establish link ij. Hence, `i j = 0 is the unique

best response to
ˆ`i?
−i .

Lemma A.2 If ij ∈ д( ˆ`) with ci j > 0 as well as c ji > 0, then ˆ`i?ji =
ˆ`
j?
i j = 1.
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Proof. We remark that ij ∈ д = д( ˆ`) if and only if
ˆ`i j = ˆ`ji = 1. �e negation of the assertion stated

in Lemma A.1 applied to
ˆ`i j = 1 and

ˆ`ji = 1 independently now implies that
ˆ`i?ji =

ˆ`
j?
i j = 1.

We also require a partial characterisation of weakly monadically stable networks. �is is stated in

the following lemma.

Lemma A.3 Let the cost structure c � 0 be strictly positive. �en every weakly monadically stable
network д ∈ GN in the consent model with two-sided link formation costs (Aa, πa) is link deletion proof
for the network payo� function φa .

Proof. Suppose that д ∈ GN is weakly monadic in the consent model with two-sided link formation

costs (Aa, πa). �en there exists some communication pro�le
ˆ` ∈ Aa

such that д = д( ˆ`) and for

every player i ∈ N :
ˆ`i ∈ A

a
i is a best response to

ˆ`i?
−i for the game theoretic payo� function πa .

Suppose now that д is not link deletion proof for φa . �en there exists some i ∈ N with ij ∈ д for

some j , i and φa(д − ij) > φai (д), implying that φi (д − ij) + ci j > φi (д). By de�nition,
ˆ`
j?
i j = 0.

Hence, from Lemma A.1, `ji = 0 is the unique best response to
ˆ`j? for player j. Since ij ∈ д by

assumption it has to hold that
ˆ`ji = 1. �is contradicts the hypothesis that

ˆ`j is a best response to

ˆ`
j?
−j .

�is contradiction indeed shows that д has to be link deletion proof relative to φa .

�e proof of �eorem 5.9 now proceeds as follows.

First we show that strict pairwise stability for φa implies monadic stability in (Aa, πa) under the

hypothesis that c � 0.

Let д ∈ GN be a network that is strictly pairwise stable with regard to the network payo� function

φa as given in the assertion. �en д is strong link deletion proof and satis�es the property that

ij < д implies that φai (д + ij) < φ
a
i (д) as well as φaj (д + ij) < φ

a
j (д).

Hence, this can be rewri�en as

ij < д implies φi (д + ij) − ci j < φi (д) as well as φ j (д + ij) − c ji < φ j (д). (33)

With д we de�ne for all i ∈ N :

ˆ`i j = 1 if ij ∈ д

ˆ`i j = 0 if ij < д

Hence, д( ˆ`) = д and
ˆ` is non-super�uous. We now investigate whether the given communication

pro�le
ˆ` is indeed a best response to the monadic belief system

ˆ`i? for all i ∈ N as required by the

de�nition of weak monadic stability.

Case A: ij < д.

From (33) it follows immediately that
ˆ`i?ji =

ˆ`
j?
i j = 0. From the hypothesis that ci j > 0 and

c ji > 0 and the de�nition of monadic belief systems, it follows with Lemma A.1 that
ˆ`i j = 0 is

the unique best response to
ˆ`i?
−i and that

ˆ`ji = 0 is the unique best response to
ˆ`
j?
−j .

Hence, for Case A the communication strategy
ˆ` satis�es the condition of weak monadic

stability.

Case B: ij ∈ д.

In this case
ˆ`i j = ˆ`ji = 1. Link deletion proofness of д now implies that

ˆ`i?ji = 1 or else (33) is

contradicted.

Cases A and B now imply that

ij ∈ д if and only if
ˆ`i?ji =

ˆ`
j?
i j = 1. (34)
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Applying strong link deletion proofness and the insight for Case A leads us to the conclusion that

ˆ`i is indeed the unique best response to
ˆ`i?
−i . �is in turn implies that

ˆ` supports д as a weakly

monadically stable network.

Finally, it is immediately clear from (34) and the de�nition of
ˆ` that for all i, j ∈ N :

ˆ`i?ji =
ˆ`i j ,

implying that the monadic beliefs are indeed con�rmed.

�us, we conclude that
ˆ` supports д as a monadically stable network. �is completes the proof of

the �rst part of the assertion.

Second, we show that the monadic stability of a network for (Aa, πa) implies strict pairwise stability

for φa under the hypothesis that c � 0.

Let д ∈ GN be monadically stable. �en there exists some action tuple
ˆ` ∈ Aa

such that д = д( ˆ`) and

for every player i ∈ N :
ˆ`i ∈ A

a
i is a best response to

ˆ`i?
−i for the payo� function πa . Furthermore,

ˆ`i?
−i =

ˆ`−i .

From Lemma A.3 we already know that д has to be link deletion proof for φa since д is weakly

monadically stable. Hence, for every ij ∈ д we have that φi (д − ij) + ci j 6 φi (д). Now through the

de�nition of the monadic belief systems and the self-con�rming condition of monadic stability we

conclude that for every ij ∈ д:

ˆ`i j = ˆ`
j?
i j =

ˆ`ji = ˆ`i?ji = 1. (35)

Let i ∈ N and h ⊂ Li (д). Now we de�ne `h ∈ Aa
i by

`hi j =


ˆ`i j if ij < h

0 if ij ∈ h.

�en д
(
`h, ˆ`−i

)
= д − h. Since

ˆ`i is a best response to
ˆ`i?
−i =

ˆ`−i it has to hold that
20

πai

(
`h, ˆ`−i

)
6 πai (

ˆ`).

Hence,

φi (д − h) +
∑
i j ∈h

ci j 6 φi (д). (36)

�is in turn implies that φai (д − h) 6 φ
a
i (д).

Since, i ∈ N and h are chosen arbitrarily, the network д has to be strong link deletion proof.

Next, let ij < д. �en
ˆ`i j = 0 and/or

ˆ`ji = 0. Suppose that
ˆ`ji = 0. �en by the con�rmation condition

of monadic stability it follows that
ˆ`i?ji =

ˆ`ji = 0. Hence by Lemma A.1,
ˆ`i j = 0. �us we conclude

that for every ij < д:

ˆ`i j = ˆ`
j?
i j =

ˆ`ji = ˆ`i?ji = 0. (37)

�is in turn implies through the de�nition of the monadic belief system that φi (д + ij) − ci j < φi (д)
as well as φ j (д + ij) − c ji < φ j (д). Or φai (д + ij) < φ

a
i (д) as well as φaj (д + ij) < φ

a
j (д). �is shows the

assertion that д is indeed strictly pairwise stable.

�is completes the proof of �eorem 5.9.

20
Here we again apply the con�rmation condition for monadic stability that is satis�ed by

ˆ`.
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