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Abstract

We investigate Gately’s solution concept for cooperative games with transferable utilities.
Gately’s conception introduced a bargaining solution that minimises the maximal quantified
“propensity to disrupt” the negotiation process of the players over the allocation of the generated
collective payoffs. We show that Gately’s solution concept is well-defined for a broad class
of games and that it can be interpreted as a compromise solution. We also consider a gener-
alisation based on a parameter-based quantification of the propensity to disrupt. We provide
an axiomatic characterisation of the original Gately value as well as these generalised Gately
values. Furthermore, we investigate the relationship of these Gately values with the Core and
the Nucleolus and show that Gately’s solution is in the Core for all regular 3-player games,
but is fundamentally different from the Nucleolus. We identify exact conditions under which
these Gately values are Core imputations for arbitrary regular cooperative games. Finally, we
investigate the relationship of the Gately value with the Shapley value.

Keywords: Game Theory; cooperative game; sharing value; Gately point; Core.

JEL classification: C71

“We are grateful for valuable suggestions and comments made by Nicholas Yannelis and three anonymous referees.
We also thank Jean-Jacques Herings, Hervé Moulin, René van den Brink as well as participants of SING17, the 2023
Workshop on Games & Networks at QUB, Belfast, and EWET 2023 for helpful comments on previous drafts of this paper.
This research has been funded under the Research Funding Program of University (FRA) 2022 of the University of Naples
Federico II (GOAPT project) with the contribution of the Compagnia di San Paolo.

TCorresponding author: Department of Economics, The Queen’s University of Belfast, Riddel Hall, 185 Stranmillis
Road, Belfast, BT9 5EE, UK. Email: r.gilles@qub.ac.uk

¥Department of Mathematics and Applications, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
E-mail: mallozzi@unina.it. Lina Mallozzi is member of the National Group for Mathematical Analysis, Probability and
their Applications (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdJAM).



1 Introduction: Gately’s solution concept

Gately (1974) seminally considered an allocation method founded on individual players’ opportu-
nities to disrupt the negotiations regarding the allocation of the generated collective payoffs. This
conception is akin to the underlying logic of the Core (Gillies, 1959) of a cooperative game: The Core
is founded on the idea that coalitions of players would threaten to abandon the negotiations over
the allocation of the total generated collective worth, if the offered allocation does not at least assign
each coalition’s worth in the cooperative game.! Gately’s conception refines this and formalises to
what extend coalitions would disrupt such negotiations.

Gately (1974) introduced the notion of an individual player’s propensity to disrupt, expressing
the relative disruption an individual player causes when leaving the negotiations. In fact, Gately
formulated this “propensity to disrupt” as the ratio of the other players’ collective loss and the
individual player’s loss due to disruption of the negotiations. Gately’s solution method aims to
minimise the maximal propensity to disrupt over all imputations and players in the game. Staudacher
and Anwander (2019) show that for most cooperative games this solution method results in a unique
imputation, being the Gately value of the game under consideration.

Clearly, Gately’s solution concept falls within the category of a bargaining-based solution
concepts (Maschler, 1992) that also encompasses, e.g., the bargaining set (Aumann and Maschler,
1964), the Kernel (Davis and Maschler, 1965), and the Nucleolus (Schmeidler, 1969).? Contrary to
many of these bargaining-based solution concepts, Gately’s conception results in an easily to compute
allocation rule that can also be categorised as a compromise value such as the CIS-value (Driessen and
Funaki, 1991) and the r-value (Tijs, 1981). These solution concepts have a fundamentally different
foundation than the axiomatic allocation rules such as the egalitarian solution, the Shapley value
(Shapley, 1953), the Banzhaf value (Banzhaf, 1965; Lehrer, 1988), and related notions.

Gately (1974) investigated his conception in the setting of one particular 3-player cost game only.
Gately’s notion was extended to arbitrary n-player cooperative games by Littlechild and Vaidya
(1976). ® Charnes et al. (1978) introduced various concepts that are closely related to an extended
notion of the propensity to disrupt. They introduced mollifiers and homomollifiers, measuring the
disparities emerging from abandonment of negotiations as differences rather than ratios. These
formulations result in associated games with a given cooperative game. Charnes et al. (1978)

primarily investigated the properties of these associated games.

Gately points: Existence, uniqueness and relationship with the Core Staudacher and
Anwander (2019) point out that the original research questions as posed by Gately (1974) were
never properly investigated and answered in the literature. In particular, Staudacher and Anwander
focussed on one particular application within the broad range of possibilities in Gately’s approach,

namely the so-called Gately point—defined as an imputation in which all propensities to disrupt

Ut is, therefore, implicitly assumed that a coalition can generate its worth independently of the actions taken by
players and coalitions outside that coalition.

2For an overview of these solution concepts we also refer to textbooks such as Moulin (1986, 2004), Maschler et al.
(2013), Owen (2013) and Gilles (2010).

3Littlechild and Vaidya used their extended notion of propensity to disrupt to define the Disruption Nucleolus in which
these propensities are lexicographically minimised.



are balanced and minimal. The Gately point is a solution to a minimax problem and Staudacher
and Anwander show that every standard cooperative game has a unique Gately point. This settles
indeed the most basic question concerning Gately’s original conception.

Here, we provide a natural and constructive axiomatic characterisation of the Gately value based
on three simple properties. These properties relate to the properties introduced by Tijs (1987) to
characterise the r-value for quasi-balanced cooperative games. We modify these properties for
the class of regular cooperative games to fully axiomatise the Gately value for this class of games.
This shows in detail that the Gately value is actually a compromise value on the class of regular
cooperative games.

Furthermore, we introduce the dual Gately value as the Gately point of the dual of a given
cooperative game. We show that the dual Gately value is identical to the Gately value for the broad
class of regular games. Hence, the Gately value is self-dual.

Gately’s definition of his propensity to disrupt puts equal weight on assessing the loss or gain of
the other players versus the loss or gain of the player under consideration. We consider a parametric
formulation in which a weight is attached to the relative importance of the gain or loss of the
individual player in comparison with the weight attached to the gain or loss of all other players in
the game. The higher the assigned weight, the more an individual’s loss or gain due to disruption is
taken into account.

The imputations that balance these weighted propensities to disrupt are now referred to as
generalised a-Gately points, where a > 0 is the weight put on an individual’s loss or gain due to
disruption. It is clear that & = 1 refers to the original Gately point. We show that for all « > 0, all
regular cooperative games admit a unique a-Gately point, generalising the insight of Staudacher

and Anwander (2019).

Analysis of the Gately value in relation to other solution concepts Gately (1974) states
clearly that he views the conception of Gately points and related concepts based on his notion of
“propensity to disrupt” as leading to Core selectors. This is exemplified by the underlying conception
of Gately’s solution method as a Core-based bargaining process. In particular, this is supported by
the analysis of the cost games considered by Gately (1974), which have rather large Cores. Here, we
primarily explore the interesting and yet unexplored relationship between Gately points and the
Core. In particular, we show that the unique Gately point is a Core selector for every regular 3-player
cooperative game. Littlechild and Vaidya (1976) already showed that this cannot be extended to
n-player games by constructing a 4-player game in which the Gately point is not in the Core.

We extend our analysis to a-Gately points and show that, for any « > 0, the unique a-Gately
point is in the Core of the game if and only if the game satisfies a-Top Dominance, a parametric
variant of the top convexity condition. Particularly, the Top Dominance condition reduces to top
convexity for zero-normalised games (Shubik, 1982; Jackson and van den Nouweland, 2005). Also, we
show that the ¢-Top Dominance condition implies that the game is regular as well as partitionally
superadditive. However, counterexamples show that there exist superadditive games with non-empty
Cores that do not contain any a-Gately point.

The axiomatic solution concept seminally introduced by Shapley (1953) is now widely accepted



as the prime value for cooperative games. It has resulted in a vast literature on determining the
Shapley value and its properties on certain classes of cooperative games such as communication
situations (Myerson, 1977, 1980), network games (Jackson and Wolinsky, 1996), and hierarchical
permission structures (Gilles et al., 1992; Gilles and Owen, 1999). This indicates the validity of the
question for which subclasses of cooperative games an alternative solution concept is equivalent to
the Shapley value.

We investigate the equivalence of the Shapley and Gately values. We conclude that, indeed,
for certain classes of regular games the Gately value results in exactly the same imputation as
the Shapley value. This includes the class of cooperative games generated by unanimity games of
equal-sized coalitions, the so-called k-games (van den Brink et al., 2023). Other classes of highly
regular games also possess this equivalence property, showing that potentially for many subclasses
of highly regular cooperative games these values might coincide.

In particular, the Gately and Shapley values are equivalent on the specific subclass of 2-games.
This equivalence enables us to utilise the characterisation developed in van den Brink et al. (2023,
Theorem 1) to establish an axiomatisation of the Gately value within this particular relevant subclass
of regular games. In fact, the class of 2-games encompasses the binary cooperation on networks,
where binary value-generating activity occurs on the links forming the network. The insight that
many values are equivalent on this particular subclass of 2-games is relevant in the analysis of these

games.

Structure of the paper We introduce and illustrate Gately’s approach through an application to
an exchange or “household” economy with three traders in Section 2. Section 3 develops the formal
treatment of Gately’s approach, defines generalised Gately points and values, and discusses the dual
of the Gately value. This section concludes with a natural and simple axiomatisation of the Gately
value. Section 4 is devoted to the investigation of the relationship of Gately points, the Core, the
Nucleolus and other Core selectors for 3-player games. We conclude the paper in Section 5 with the
investigation of the Gately value with the Core for arbitrary n-player games and the equivalence of
the Gately and Shapley values. The final section summarises and considers further developments

and research directions.

2 An illustrative example: A household economy

To illustrate the ideas behind Gately (1974)’s conception, we consider an exchange economy with
three traders. We use the examples of value allocations in general exchange economies developed
in Shafer (1980), Yannelis (1983) and Scafuri and Yannelis (1984). We particularly focus on the
example developed in Shafer (1980) and Scafuri and Yannelis (1984). This example illustrates the
intricacies of applying cooperative value concepts to exchange economies founded on the value
theory set out by Shapley (1969) and Aumann (1975). The objective of these contributions is to apply
to notion of the Shapley Value (Shapley, 1953) to identify “value allocations” in the economy. This is
pursued by constructing a cooperative game with side payments from the economy, founded on

the hypothesis that all generated utilities from commodity consumption are cardinal and transfers



of these utilities can be considered as well as applied. As such, the exchange economy becomes a
collective entity to which individual agents as members can make contributions. Allocated payoffs
from the collectively generated wealth in the economy can now be supported through appropriate
allocation of commodity bundles.*

The example developed by Shafer (1980) shows that, even if a trader is endowed with a zero
commodity bundle, i.e., has no endowment, that trader can be assigned a strictly positive commodity
bundle under the application of the Shapley value. This is due to the trader’s role in the generation
of the resulting gains from trade, due to the properties of her cardinal utility function. It shows that
the Shapley value can lead to unnatural commodity allocations in such economies.

In the next discussion, we explicitly interpret the underlying exchange economy as a household
of which its members make contributions to the collective well-being in the household. Endowment
of goods act as inputs to the generation of such collective well-being. This well-being is contributed
by every household member through application of a cardinal contribution function. The total
well-being is subsequently allocated to the members through the appropriate allocation of quantities

of commodities contributed to the household.

A household economy We consider a pure exchange economy with three agents—denoted as 0,
1 and 2—and two tradable commodities, X and Y. Each agent i is endowed with a cardinal utility
function u;: R2 — R, and a commodity bundle ¢; € R2.

We can interpret the three agents forming a household in which the three cardinal utility
functions represent individual contribution functions for the three household members toward
the household’s collective well-being. A commodity bundle (x,y) € R? is converted by household
member i in a contribution of u;(x, y) > 0 to the collective well-being in the household.

In particular, it is assumed that all three household members have equal weight and that the total
generated well-being in the household is, therefore, represented by the total household well-being
function U = ug + uq + uy: (Ri)3 — R,. It is assumed that the total well-being can be allocated
among the three household members through the assignment of appropriate commodity bundles.

Now, an allocation in this household economy is a triple of bundles x = (x, x1, x2) € (Ri)3 such
that xo + x; + x; = e = ey + e; + e2. The bundle x; is assigned to household member i and contributes
to generate the total well-being given by ug(x0) + u(x1) + uz(x2).

Using the simplified example studied by Scafuri and Yannelis (1984), we let the three cardinal

utility functions® and endowments be given by

1

uO(XO! yO) = [lxa + %yg ] a and € = (0’ 0) (1)
wr (e yn) = | 3] + 1} ]ﬁ and e, = (1,0) (2)
s (2, y2) = [ + 1y ]’3 and e, = (0,1) (3)

4We emphasise that in this construction, utility functions are used as generators of contributions to collectively
generated wealth as well as traditional utility functions measuring individuals’ well-being from consuming allocated
commodity bundles.

>These utility functions are from the well-known family of “Constant Elasticity of Substitution” (CES) functions.



where 0 < f < a < 1 are the parameters that determine the efficiency of the contribution of a
member to the collective household. The total endowment of the householdis e = eg+e; +e; = (1,1).
This configuration implies that agent 0 is more productive in use value generation than the other

two members, but is not endowed with any of the two commodities.

Converting the household economy into a cooperative game Using the methodology set
out in Shafer (1980) and Scafuri and Yannelis (1984), we can convert this household economy to a
cooperative game with side payments v: 2V — R, based on the cardinal utility functions of the
three members as use value generating functions under equal weighting of the members with for

every coalition S € N = {0, 1, 2}:

0(S) = max {Z u;i (x;)

(o) e(R2)° | ics

Z(xi—en:o} )

i€S

An allocation x € (Ri)3 supports a utility distribution u = (ug, uy, uz) € R® with ug + u; + uy = v(N)
if u;(x;) = u; for all i = 0, 1, 2. Furthermore, an allocation x € (Ri)3 is a Core allocation if for every
coalition S € 2N: 3, s u;(x;) = v(S).

From the utility functions and endowments given above, it is easy to establish that the cor-
responding cooperative game v is given by v(0) = 0, v(1) = v(2) = 2_%, v(01) = v(02) = Z_é,
v(12) = 1,and v(N) = 0v(012) = 1.°

Scafuri and Yannelis (1984) established that the Shapley value of this cooperative game is given
by

1 _1
(p(v):(307 1_250: 1__250) Wlths():%(z_a—z ﬁ) (5)

2 > 2
Remark that this Shapley allocation is not a Core allocation, since the coalition 12 = {1, 2} is

which is supported by the Shapley allocation x; = (so, So) and x} = x; = ( s Ls )

only allocated u; (x7) + uz(x3) = ¢1(v) + ¢2(v) =1 =59 < 1 =0(12). In particular, we note that the

Core of the cooperative game v is determined as

C(v) = {(O,t,l—t) 2‘5 <t< 1—2_% }

The quintessential feature of this particular household economy is that Agent 0 does not contribute
any commodity inputs to the household. Nevertheless, this dummy member has a superior value-
generating technology to contribute to the collective household in comparison with the other two
members of the household. This, in turn, is recognised in Shapley’s conception, resulting in a strictly
positive Shapley value for Agent 0 and, thus, the assignment of a strictly positive commodity bundle
for that member in the identified Shapley allocation. This seems contradictory as is shown by the
fact that this Shapley allocation is not a Core allocation in this household. We show that Gately’s

conception of his value corrects this problem and actually assigns a Core allocation to this household.

SHere, for convenience, we use the abbreviated notation 0 = {0} C N, 01 = {0,1} C N, etc.



Gately’s conception Gately (1974) introduced the idea that during any negotiation between the
three household members 0,1 and 2, each of these three parties can disrupt the proceedings by
departing the negotiations and that this disruption can be quantified. Gately explicitly introduced
his conception to delineate and focus on a specific Core selector in the 3-player application explored
in Gately (1974).” Gately’s methodology is different from the foundations of other well-known
bargaining solutions such as the Bargaining Set, the Kernel (Davis and Maschler, 1965) and the
Nucleolus (Schmeidler, 1969). In particular, Gately devised a much simpler solution than the
Nucleolus, which is notoriously hard to compute (Maschler, 1992).

Gately founded his approach on the mathematical quantification of the disruption of the ne-
gotiation process that each individual player can cause, represented by a player’s “propensity to
disrupt”. Gately (1974, p. 200-201) introduces this concept as “the ratio of how much the two other
players would lose if a player would refuse to cooperate to how much that player would lose if it
refused to cooperate”.

For Gately’s conception we consider any imputation of the cooperative game v. Here, an

imputation refers to any wealth distribution u = (ug, uy, up) € R® that is individually rational (IR),
11

ie., (ug,up,uz) > (0,2 £,2 P |, as well as efficient, i.e., ug + u; + uy = 0(012) = 1.

If the bargaining household members consider a proposed IR and efficient imputation (u, u1, uz),
Gately’s notion of the propensity to disrupt by agent 0 would then be the ratio of the other agents’
potential loss u; +uy —v(12) to Agent 0’s potential loss from non-cooperation, computed as uy —v(0).
Hence, using uy + u; + uz = 0(N) = 1, Agent 0’s propensity to disrupt is computed as

up+u; —0(12)  ur+up—1 _ —up

do(ug, uy, up) = — =-1.
o(uo, uy, uz) o — 0(0) ” ”

Similarly, we construct the propensity to disrupt for both other household members as

1 1 1 1

ug+uy —0(02) ug+uy—2"a« 1-2"a-uy 1-2"a-27F
dl(uo’ulauZ) = " — U(l) = 1 = 1 = : -1
! ul—Z_ﬂ ul—Z_ﬁ ul—Z_ﬁ
_1 _1 _1 1
up+u; —0(02) ug+u;—2"a 1-2"a-uy, 1-2"a-2758
dZ(anulauZ) = Uy — 0(2) = 1 = 1 = 1 -1
2 u2—2_ﬂ u2—2_:3 Ltz—z_ﬁ

Gately’s motivation was that, if a player would get a relatively small payout, the player’s propensity
to disrupt the agreement is relatively high, indicating a higher impact on the negotiation.® Now, the
stated objective of Gately’s proposed solution is to select an imputation that minimises the maximal

propensity to disrupt at that imputation. Hence, one should select an imputation that solves the

"From the stated methodology, Gately’s focus is on how individual players negotiate on the allocation of collectively
generated worth. The methodology is similar to the definition of the Core as those allocations to which there are no
objections, in the sense that there are no coalitional incentives to abandon the negotiations to allocate the collectively
generated worth by pursuing an alternative arrangement.

81n particular, if a player would not get any benefit in the negations in the sense that u; = (i), her propensity to
disrupt is infinitely large. Similarly, if the player would be proposed to receive the total generated benefit u; = v(N), her
propensity to disrupt is usually negative.



minimax problem stated as

flninl max { do(uo, Uy, uz), di (o, Uy, Uy), dy (uo, uy, uz) } .

(uo,ul,uz)>(0,2_ﬁ,2_ﬁ ): ug+u+us=1

Noting that d; (ug, u1, u2) > —1 and d, (u, Uy, u2) > —1, this leads to the condition that d; (ug, uy, uz) =
dy (ug, ug, us), since do(uo, u1, up) = —1is certainly not a maximum. Therefore, uy = 0. Hence, Gately’s

solution is determined by a system of two equations: u; = u; and u; + u; = 1. Therefore, the solution

1
b 2’
allocation x9 = (xg, xf, xg) =((0,0), (% %) , (% %) ). We remark that x9 is indeed a Core allocation

to Gately’s minimax problem is unique and determined as g(v) = (0 %), supported by the Gately
for this particular household economy.

We remark that Gately’s solution in this household economy satisfies the equal treatment
property and is coalitionally fair. We refer to Section 3.1 for a further discussion of the general

fairness of Gately’s solution for cooperative games.

Generalising Gately’s solution conception Next, we assume that a player can discount her
own losses due to disruption or, conversely, assign more weight to her own losses than the losses of
the other players in a reformulation of Gately’s propensity to disrupt. In particular, we introduce
a weight parameter y > 0 for the denominator in the propensity to disrupt. Instead of applying
this directly to the formulated propensity to disrupt d;, i = 0, 1, 2, itself, we apply this weight in the
modified form d; + 1, denoted as dl)./. Hence, for each of the three agents in the household economy,
we introduce the y-weighted propensity to disrupt as
1 1 1 1

1-2"a—-2F 1-2"a—-2 58
d())/(uo, up,uz) =0 d{(uo’ul,UZ) =——F7 >0 d%/(uo,ul,uz) =—F7 >0

1\ 1\
(U1—2 ﬁ) (UZ—Z ﬁ)
For any y > 0, a generalised Gately solution would solve the minimax problem given by

min max { d} (uo, 1, u), d) (o, uy, uz), d} (uo, u1, uz) } .

(uo,ul,u2)>(0,2_ﬁ,2_ﬁ): up+ui+uy=1

The generalised solution for this modified Gately conception is now determined by the equations:

1

[ S § I
1—2a—2/3_1—2a—zﬁ

_L\r _1\Y
(u1—2 :5) (u2—2 ﬁ)

The equations stated above lead to the conclusion that, for every y > 0, the generalised Gately

1
3 E’
Again, there is a close relationship between these (generalised) Gately solutions and the Core of

and u; +uy = 1 with ug = 0.

solution is identical to the regular Gately value, i.e., g¥(v) = g(v) = (0 %) forally > 0.

this household economy in the sense that every generalised Gately solution is in the Core as well.



This close relationship between these Gately values and the Core refers directly to Gately (1974)’s
original motivation to identify his solutions as Core selectors.

Finally, we remark that in this application the generalised y-Gately value for any y > 0 including
the regular Gately value coincides with both the r-value (Tijs, 1981) and the Nucleolus (Schmeidler,
1969). Moreover, in this application the Gately value is obviously coalitionally fair and satisfies the

equal treatment property.

3 Cooperative games and Gately values

We first discuss the foundational concepts of cooperative games and solution concepts. Let N =
{1,...,n} be an arbitrary finite set of players and let 2Y = {S | S C N} be the corresponding set of
all (player) coalitions in N. For ease of notation we usually refer to the singleton {i} simply as i.
Furthermore, we use the simplified notation S —i = S \ {i} forany S € 2V andi € S.

A cooperative game on N is a function v: 2V — R such that o(@) = 0. A game assigns to every
coalition a value or “worth” that this coalition can generate through the cooperation of its members.
We refer to v(S) as the worth of coalition S € 2V in the game v. The class of all cooperative games in

the player set N is denoted by
VN = {v | v: 2NV — R such that o(2) = 0}.

For every player i € N let v; = v({i}) be her individually feasible worth in the game v. We refer to
the game v as being zero-normalised if v; = 0 for all i € N. The collection of all zero-normalised
games is denoted by Vf)\f c VN,

The set VV is a (2" — 1)-dimensional Euclidean vector space. For its analysis it is useful to use the
unanimity basis of this Euclidean vector space. Here, for every coalition @ # S C N the S-unanimity

game us € VY is defined by

1 ifSCT
us(T) = (6)
0 otherwise

Every game v € VV can now be written as v = Y5, As(0) us, where Ag(v) = Yrcs(=1)!S171T1o(T)

is the Harsanyi dividend (Harsanyi, 1959) of coalition S in game .

Marginal contributions and classes of games The marginal contribution of an individual player
i € N in the game v € V¥ is defined by her marginal or “separable” contribution to the grand
coalition in this game, i.e., M;(v) = v(N) —v(N —i) where N —i = N\ {i}. This marginal contribution
can be considered as a “utopia value” (Tijs, 1981; Branzei et al., 2008) for the following classes of

cooperative games:

Definition 3.1 A cooperative gamev € VV is



« essential if it holds that

D lvj<o(N) < > M;(0) (7)

JjEN JjEN
« semi-standard if for every playeri € N it holds that

v; < M;j(v) or, equivalently, v; +v(N —i) < v(N) (8)

« semi-regular if v is essential as well as semi-standard.

« standard if v is semi-standard and, additionally, for at least one player j € N it holds that
vj < Mj(v), o, equivalently, vj + v(N — j) < o(N).

« regular ifv is essential as well as standard. The collection of regular cooperative games is denoted
by VN c YN ?
The class of regular cooperative games VY is the main domain of analysis for various forms of Gately
solutions and their generalisations. In particular, we denote the collection of regular zero-normalised
games by VN = v nvl.

An allocation in the game v € V¥ is any point x € RY such that x(N) = v(N), where we denote
by x(S) = ¥ jes x; the allocated payoff to the coalition S € 2N, We denote the class of all allocations
for the game v € VN by A(v) = {x € RN | x(N) = 0(N)} # @. We emphasise that allocations can
assign positive as well as negative payoffs to individual players in a game.

An imputation in the game v € VY is an allocation x € A(v) that is individually rational in
the sense that x; > v; for every player i € N. The corresponding imputation set of v € V¥ is now
given by I(v) = {x € A(v) | x; > v; for all i € N}. We remark that for any essential game v with
v(N) > X,y vi the imputation set I(0) is a polytope with a non-empty interior. In particular, this
holds for the class of regular games V.

We recall that for any cooperative game v € VV, the Core is defined as a set of imputations
C(v) c I(v) such that x € C(v) if and only for all coalitions S € 2V: x(S) > v(S). Hence,

C(v) = {x € 1(v) | x(S) > v(S) forall S € 2V }. 9)

Let V € VN be some collection of TU-games on player set N. A value on V is a map ¢: V — RN
such that ¢(v) € A(v) for every v € V. We emphasise that a value satisfies the efficiency property
that 3};cn ¢i(v) = v(N) for every v € V. We remark that a value ¢ is individually rational (IR) if
¢(v) € I(v) forallv € V.

3.1 Gately points and Gately values

As discussed above, Gately’s approach is based on a formal notion of the “propensity to disrupt”.

We emphasise that every regular game v € VN satisfies a partitional form of superadditivity in the sense that
o(N — i) +v; < v(N) for every i € N, which is aligned with the notion of a game being weak constant-sum as defined
in Staudacher and Anwander (2019, Definition 5). Furthermore, Staudacher and Anwander (2019, Theorem 1(a)) is also
founded on the class of regular cooperative games.



Definition 3.2 (Gately, 1974; Littlechild and Vaidya, 1976)
Letv € VN be a cooperative game on N. The propensity to disrupt of a coalition S € 2V at allocation
x € A(v) with x(S) # v(S) is defined by

x(N\S)—o(N\S)
x(S) —v(S)

d(S,x) = (10)
The propensity to disrupt of playeri € N at allocation x € A(v) satisfying x; # v; for everyi € N
is given by

x(N—i)—o(N-i) M) —xi _Ml()—u

= -1 (11)
Xi — 0; Xi — 0; Xi — 0;

di(x) =d({i},x) =

A Gately point of the gamev € VY is defined as an imputation g € 1(v) that minimises the individual
propensities to disrupt, i.e., for all playersi € N:

di(9) < min maxd;(x) (12)

x€l(v) jeN

Gately points of cooperative games have most recently been explored by Staudacher and Anwander

(2019). They showed the following properties.'°
Lemma 3.3 (Staudacher and Anwander, 2019)

(a) Every standard cooperative gamev € VN admits a unique Gately point g(v) € 1(v) given by

Mi(U)—Ui
i(0) =0, N) - o
gi(0) =oit ZjeN(Mj(U) —Uj) (U( : jeNUj) =

foreveryi e N.

or every standard zero-normalised game v € the unique Gate oint is given
b) F y dard lised g VN th ique Gately point is given by

o(N)

g(v) =

Lemma 3.3(a) allows us to introduce the Gately value as the map g: V¥ — R on the class of
regular cooperative games defined by equation (13).

We emphasise that the Gately value is only non-trivially defined on the class of regular coopera-
tive games VY, while Gately points are in principle defined for arbitrary cooperative games with
the property that M;(v) # v; for some i € N. As pointed out by Staudacher and Anwander (2019),
there might be games that admit no Gately points and other games that might admit multiple Gately

points.

Gately points and equal treatment Fairness properties have been considered as a main part of
the cooperative game theoretic literature. We note that the Gately value as Lemma 3.3(a) clearly

satisfies the main fairness properties.

104 proof of the properties collected here can be found in Staudacher and Anwander (2019).
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A solution f on some class of cooperative games VN C VN satisfies equal treatment of equals
if for every v € V¥ and i, j € N with o(S U {i}) — 0(S) = o(S U {j}) —o(S) forall S € N\ {i, j}
it holds that f;(v) = fj(v). Since M;(v) = M;(v) as well as v; = v; for the constructed game o, it
follows immediately that the Gately value g satisfies the equal treatment property on the class of all
standard games.

More generally, we can compute that the following equal treatment property holds for the Gately

value. The next statement immediately follows from the definition of the Gately value.
Proposition 3.4 For every standard cooperative game v € VN and every pairi,j € N:

_ £ and onlv i v; = 0 M;(0) - M;(0)
9 =9/ Yand oSS o T o)~ S Male)

Generalised Gately values We generalise the notion of Gately points. The next definition

introduces a generalised notion of the Gately value on the class of standard cooperative games.

Definition 3.5 Letv € VV be some standard cooperative game on N. For any parameter value a2 > 0

we define the a-Gately value of game v as the imputation g% (v) € I(v) with

(M;(v) —v;)”
ZjeN (Mj(v) - Uj)a

g7 (v) =0v; + (U(N)—Z()j) for everyi e N. (15)

JjEN

We referto G = {g*: VN — RN | a > 0} as the family of generalised Gately values on the domain of
regular cooperative games VY. For anyv € VY the related set G(v) = {g*(v) | @ > 0} C 1(v) defines
the Gately set for that particular game.

From this definition we can identify some special cases:
« We note that g' = g € G is the original Gately value on the class of regular games V2.

« Although ¢g* is not defined for & = 0, note that

lim g7 (@) = v + ;o (“(N) 2. “J')
jEN
for all i € Ny(v) and lim, |9 g¥(v) = v; for i € N\ Ny(v), where Ny(v) = {i € N | M;(v) >
v;i} # @. This compares to the CIS value of v (Driessen and Funaki, 1991).
Furthermore, if the game v € VN is additionally zero-normalised, lim, |, g{ (v) corresponds to

the equal division value given by E(v) = ”(N) if M;(v) # 0 foralli € N.

« Finally, lim, 0 g% (v) = + R (v)l (o(N) - 2 jeN Uj ) foralli € Ni(v) and limy—00 g% (0) = v;
for i € N\ Ni(v), where Nl(v) ={i € N | M;(v) —v; = maxjen(M;(v) —v;) } # @. Again,

this can be interpreted as a variation of the CIS value.

The next definition introduces a generalised formulation of Gately’s seminal notion of the propensity
to disrupt. We show that a-Gately values are closely related to optimisation problems based on this

generalised notion.
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Definition 3.6 Letv € VV be some cooperative game on player set N. For every parameter § > 0 the
corresponding generalised -propensity to disrupt of player i € N at imputation x € I(v) with
X; # v; is defined by

M;(v) —v;

(x; = Ui)ﬁ 19

pl(x) =
We note here that for § = 1, this generalised propensity to disrupt corresponds exactly to the original
propensity to disrupt for an individual player as introduced by Gately (1974), in the sense that
pi(x) = MEETH = di(x) + 1.

The following theorem shows the relationship between the balancing of such generalised propen-
sities to disrupt and corresponding a-Gately values. In particular, it is shown that the a-Gately
value can be interpreted as a bargaining value, like the original Gately value and the Nucleolus.
Furthermore, for certain values of «, the minimisation of the generated total generalised propensity

to disrupt at an allocation results in the corresponding a-Gately value.
Theorem 3.7 Letv € VY be a regular cooperative game on N.
(a) Leta > 0 and define f = é Then the a-Gately value g% (v) € I(v) is the unique f-Gately point
in the sense that g* (v) is the unique imputation that satisfies the property that

pl (9%(0)) < min
xel(o

p
lin max pj (x) (17)

for every playeri € N.

(b) Let0 < a < 1 and define f = le“ > 0. Then the a-Gately value g*(v) € 1(v) is the unique
solution to the minimisation of the total aggregated generalised -propensity to disrupt of the

gamev:

9%(v) = argmin, ., Z pf(x) (18)
jeN

Proof. To show assertion (a), we note that for every imputation x € I(v) and every player i € N with
Xi # v pf(x) = % > 0 from the hypothesis that M;(v) > v;. Furthermore, since M;(v) > v;
for at least one j € N, we conclude that r = max;ecn pf(x) > 0.

Following the method developed by Staudacher and Anwander (2019), the defining minimax problem
MmiNycr(y) MaXjen pf (x) can be solved by identifying r > 0 and an imputation x* € I(v) such that
piﬁ(x*) =rforallie Ny={i e N| M) >uv} #@.

First, note that for all j € N\ Ny = {j € N | M;(v) = v;} we can set x; = v;. Next, for i € N, we can

now solve for r > 0 as well as x;. Rewriting pl.ﬁ (x) = r, we derive that

r

1
. = (M) ‘o

Note that, since M;(v) > v; for all i € N, it follows that x; > 0 for every i € N. It must be that
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x € I(v). Hence,

1
. (v) —v;) B
in _ ZIENO(MI(U) v;) + Zoi = o(N).

1
ieN rB ieEN

1 1
Since ¥;en, (M;i(v) —0;)F = ¥, n(M;(v) —v;) P, we conclude that

118

[ZieN(Mi(U) —0;) P

r= 3 > 0.
[o(N) = Zjen o) ]

From this we conclude that the identified solution exists and is unique under the regularity conditions
on the game v.

Substituting the formulated solution of r back into the formulation for the solution, we deduce that

1

x;=0; + (Mi(2) — o) T (Z)(N)— Zvj) > ;.
Yjen(M;(0) —v)) P JeN

Recalling that f = é we indeed conclude that x; = g7 (v), leading us to conclude that assertion (a)

has been shown.
To show assertion (b), consider the minimisation problem miny e (o) RP(x) as formulated, where

Rf(x) = 2jeN pf’(x). Deriving the Lagrangian L(xy, .., x5, 1) = Xjen Ig;(fll_)%’ ] + A jenN Xi —

v(N)), and deriving the necessary first-order conditions, we conclude that

M) - _ Mp(0) =02 _  _ Mn(v) —on
(x1 = 01)'3+1 (x2 — Uz)ﬁJr1 (xn — Un)ﬁ‘L1 .

Thus, we arrive at n — 1 equations given by

1
My (0) — 0,) P
xk—vk:M(xl—vl) fork=2,...,n.

(M;(v) —vq) P+
This we can rewrite as

n

o(N) - ij Cxi—0y = (Mz(0) —0p) 71

1 (xl - Ul)
j=3 (M;(v) —vy) P+

together with

1
M (0) — 0,) P
xk20k+M(X1—U1) fork=3,...,n.

(M (v) — ) P

13



Summing up the LHSs and the RHSs, we have the following equalities:

o(N) —x; — 0, =U3+...+0n+ZM(J€1 - 01)
=2 (Mi(v) —01) P

This leads to the conclusion that

n

(x1 —01) < 1
o(N)=- ) vj=x1+ ———— E (M;(v) —v;) P+
]Z:; ’ 1 (M1(v) —0p) P =2 ! ’

=x + (x1—01)i Z(f\/fj(v)—ﬂj)ﬁ = (x1 —01)
(My(v) = 01) P =1

Hence, we conclude that

(M (v) —vy) P [o(N) — anvj] T

_1
=1(M;(0) —v;) P J=1

lﬁ leads us immediately to the insight that the first player’s allocation is

Remarking that a =
actually her a-Gately value value. The resulting allocations for the other players j = 2,...,n are

derived in a similar fashion. []

We remark that Theorem 3.7 applies to regular cost games or problems as well. Indeed, for a cost
game v € VN satisfying o(N) < 2jen vy, Mi(v) < v; < Oforalli € Nand M;(v) <v; < 0 for some
J € N, both assertions of Theorem 3.7 hold. We do not consider these games here, but refer to, e.g.,
Moulin (2004) for a discussion of these cost games.

To illustrate the importance of regularity of those cooperative games for which Gately values
are well-defined as imposed in Theorem 3.7(a), we consider the next example of a three-player game

that exhibits non-regularities.

Example 3.8 Consider a 3-player game v on N = {1,2,3} defined by v; = 2,0, = 1, 03 = 0,
v(12) = 0(13) = v(23) =4 and o(N) = 5.

We remark that the marginal contributions are M; (v) = M, (v) = M3(v) = 1, leading to the conclusion
that M;(v) — 0y = -1 < 0, M3(v) = vz, and M3(v) — v3 = 1 > 0. Hence, this game is neither essential
nor semi-standard.!!

It is straightforward to establish that this game admits a continuum of Gately points identified as
{(t,3,2—-1)|0<t <2} CAv). ¢

With regard to Theorem 3.7(b) we remark that for § = 1 the minimisation of the aggregated total

1_
2

Furthermore, if f = 0, the generalised propensity to disrupt for any player i € N is no longer a

propensity to disrupt R'(x) = Y ;cn di(x) results in the 3-Gately value as the unique solution.
function of the allocation x;, implying that the total aggregated 0-propensity to disrupt is a constant
function. This implies that the minimisation problem (18) has a continuum of solutions, including

all Gately points.

We also remark that this game has actually an empty Core.
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3.2 Dual Gately values

Let v € VN be a cooperative game. Then the dual game of v, denoted by v*: 2V — R, is defined by
v"(S) =ov(N) —o(N\S) for every coalition S € 2V (19)

The dual of a game assigns to every coalition S C N the worth that is lost by the grand coalition N
if coalition S leaves the game. Note in particular that v*(@) = 0, 9" (N) = v(N) and 0] = 0*({i}) =
o(N) —o(N — i) = M;(v) for all i € N. Finally, M;(v*) = v; for every i € N.

We investigate the “dual” of a given value, which assign to games the value of its dual game.
As an illustrative example, we note that Driessen and Funaki (1991) considered the dual of the
CIS-value, defined as the CIS-value of the dual game. They refer to this notion as the “Egalitarian
Non-Separable Contribution” value, or ENSC-value.

We can apply a similar procedure to the Gately value. We note first that the dual of a Gately
value only can properly formulated for parameter values that are natural numbers, i.e., @ € N. This

is subject to the next definition.

Definition 3.9 Let a € N. The dual a-Gately value is a map g: V¥ — RN that assigns to every
regular cooperative game v € VY the a-Gately value of its dual game v* € VN, ie, g% (v) = g*(v*) €
A(v).

The next proposition considers some properties of dual a-Gately values.

Proposition 3.10 Consider a regular cooperative gamev € VY and let « € N be a natural number.

Then the following properties hold:

(a) Forevery a € N the dual a-Gately value of v is well-defined and given by

e _aren (Mi(o) —0;)® N
gi (U) - MI(U) ZjeN(Mj(v) _ Uj)a (]%:VM](U) U(N) ) (20)

for every playeri € N.

(b)  The dual a-Gately value of v is identical to the a-Gately value of v, i.e., g* (v) = ¢*(v), if and
only ifa =1 or Mj(v) —v; = M;j(v) —v; > 0 foralli, j € N.

Proof. To show assertion (a), let @ € N. We compute that for every player i € N:

_ M;(0*) — 0@
g?(v)=g?<v*>=vr+z( ) o) (a*(N)—Zv}f)

e (M (o) — o) 22

sy (Mi(v) —0)® N
_Mz(U) ZjeN(Mj(U)_Uj)a (];VM](U) U(N))

with the remark that (—1)“ attains only the values 1 and —1 due to a € N.
Furthermore, we note that };c g_l.“(v) = o(N), thereby showing that the dual a-Gately value is
indeed well-defined.
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To show assertion (b) let i € N and @ € N. We now note that from assertion (a) g7 (v) = g?(v) if and

only if

(M;(v) — ;)" _ (M;(v) —0;)*
v + Yjen(Mj(v) —v))® (U(N) - Z vj) = M;(v) - S e (M;(0) — 0))° (Z M;(v) - U(N))

jeEN JEN
or
ien (Mi(0) —0;)” -
ZIGN( (U) (4 ) — (MI(U) _ Ui)a 1
ZjeN (M;(0) —vj)
This is valid for all i € N if and only if & = 1 or M;(v) —v; = M;(v) —v; > Oforall i, j € N. [

Proposition 3.10 (b) implies immediately that the dual Gately value is the same as the Gately value

on the class of regular games. This is stated in the next corollary.

Corollary 3.11 For every regular cooperative game v € VY, the dual Gately value of v is identical to

the Gately value of v, i.e., g;(v) = gi(v) foralli € N.

3.3 Characterisations of the Gately value

It is easy to see that the Gately value on the class of regular games V¥ is a compromise value of
the individual worth vector and the net marginal contribution vector. Indeed, for any regular game
v E Vf , the individual worth vector is given by v, = (04, ..., v,) and the net marginal contribution
vector by 1 = M(v) — vy, = (M;(0) — vy, ..., Mp(v) — v, ). Now the Gately value g(v) for game v can

be written as

0(N) = Dien Ui
2ien (M;(0) — ;)

g(0) = (1 = yu) vy + yo M(0) where y, = (21)

This re-interpretation of the Gately value as a compromise value holds on the class of regular games
VY and allows us to characterise the Gately value as such a compromise value.

We remark that the compromise values form a distinct subclass of solution concepts that are
based on a similar methodology of determining the exact allocation of the worth of the grand
coalition N. This refers to the fundamental property that the value is a convex combination of a
well-defined lower and upper bound such that the value satisfies efficiency. We refer to Tijs and
Otten (1993) and Gilles and van den Brink (2023) for detailed discussion and characterisations of

these solution concepts.

An axiomatisation of the Gately value Tijs (1987) devised a simple axiomatisation for the
7-value (Tijs, 1981) that is completely based on the property that the r-value is a compromise value.
We can devise a similar axiomatisation of the Gately value by replicating Tijs’s characterisation
methodology to the Gately value to arrive at the following axiomatisation.

In this characterisation, a variant of the compromise property and the restricted proportionality
property, seminally introduced by Tijs (1987) on the class of quasi-balanced games, can be constructed

- N
on the class of regular cooperative games V.
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Theorem 3.12 The Gately value g is the unique map f: VI — RN on the class of regular games V¥

that satisfies the following three properties:

(i)
(i)

(iii)

Efficiency: Y;cn f;(v) = 0(N) for everyo € VY;
vy-Compromise property: For every regular gamev € VY : f(v) = v, + f(v — v,), where
v — vy € VN is the zero-normalisation of v defined by (v — v,)(S) = 0(S) — X5 vi for every

coalition S € 2N | and:

Restricted proportionality property: For every zero-normalised regular cooperative game
veVN: f(v) =y, M(v) for somey, € R.

Proof. We first show that the Gately value g: V¥ — R¥ satisfies the three stated properties. For

that purpose let v € VY.

(i)
(i)

(iii)

Obviously the Gately value g(v) is efficient for v.

Letw=0-v, € Vév be the zero-normalisation of v. Then for every i € N we deduce
that w; = v; —v; = 0 and M;(w) = w(N) —w(N — i) =o(N) —o(N — i) —0; = M;(v) — v;.
Hence, M;(w) > 0 = w; and for those players j € N with M;(v) > v; we deduce that
Mj(w) > 0=w;.

Furthermore, };cy ;i < 9(N) < ey Mi(v) is equivalent to 0 < o(N) — 3 ;eny vi = w(N) <
Yien Mi(0) = 3ien vi = Dien Mi(w), implying that w € VY. Therefore, w =0 — v, € V.
Now by definition for every i € N:

() = Miw) __ M) -w I S
s = 5 N = S o) (v<N> ZN) 4i(0) - .

This shows that g;(v) = v; + g; (v — vy).

Assume that o € VN. Then for any i € N: g;(v) = 5 M; (o) - v(N) showing restricted

jen M; (0)
proportionality with y, = S M) zﬁ%(v)-
je

Next, we show that if f: VI — RN satisfies the three stated properties, it is equal to the Gately

value. Take any regular game v € VY and let w = v — v, € VN be its zero-normalisation.

Then from restricted proportionality we have that f(w) = y,,M(w) = y,, (M(v) — v,). Furthermore,

from the compromise property we conclude that

f(v) =Wy +f(U - Vv) =Vy+ YU(M(U) - Vv)-

Using efficiency we then conclude that

Zf,(v) = Zvi+yz, (ZMi(U) - Zvi) =o(N)

ieN ieN

ieN ieN

implying that

0(N) — Xien 0i

o e (Mi(0) —07)
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We immediately conclude from this that f;(v) = g;(v), showing the assertion. ]
We note that the three properties in this axiomatisation are independent:

« The efficiency property is a well-established property that is used throughout the literature. It
guarantees that the allocation rule selects from the set of imputations in the game rather than
the broader set of allocations. We note that the allocation rule f(v) = M(v) on V¥ clearly
satisfies the compromise property as well as the restricted proportionality property, but which

is not efficient.

+ The v,-compromise property is a reduced form of additivity and as such decomposes the
allocation rule in a translation of the allocation assigned to the zero-normalisation of the game.
This property originated in Tijs (1987) as the “compromise property” for the minimal right
vector m(v) rather than the vector of individual worths v,,. It is clear that the 7-value satisfies
efficiency and the restricted proportionality property. It does not satisfy the v,-compromise

property, but rather the compromise property based on the minimal rights vector m(v).

« The restricted proportionality property imposes zero-normalised games are assigned an al-
location that is proportional to the utopia vector M(v). This property originates from Tijs
(1987) as well and it is satisfied by the r-value. On the other hand, the Shapley value is a
solution concept that is efficient and satisfies the v,-compromise property, but it does not

satisfy restricted proportionality.

4 Gately points and the Core for 3-player games

Gately (1974) introduced his solution concept as a Core selector within the setting of three-player
games only, even though Gately did not investigate the exact conditions under which this solution
is indeed in the Core. Littlechild and Vaidya (1976) point out that Gately’s conception does not nec-
essarily result in a Core selector for games with more than three players, devising a counterexample
for 4 players.

In this section we first discuss the relationship between the Gately value and the Core for games
with three players only. This is an exceptional case, since the worths of all coalitions in a three-player
game are featured in the computation of the Gately value, in contrast to games with more than three
players, in which worths of medium-sized coalitions are not considered. This is further explored in
the second part of this section, which considers the relationship between the Gately value and the
Core of cooperative games with an arbitrary number of players.

We are able to confirm that there is a strong relationship between Gately points and the Core in
three-player games. We first illustrate that there exist essential games with empty Cores for which

the unique Gately point is well-defined.

Example 4.1 Consider an essential three-player game with N = {1,2,3} and v given by v; = 5,
vy =v3 =0,0(12) =0(13) = 1,v(23) =5 and o(N) = 6.
First note that v is indeed essential, since M;(v) = 1 and M,(v) = M3(v) = 5. On the other hand, v is
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not semi-standard, since v; =5 > M;(v) = 1.

Note that the Core of this game is empty, since for an allocation x € A(v) with x(N) = o(N) =6
and x; + x3 > v(23) = 5 it follows that x; < 1. This is contradiction to the Core requirement that
X1 =2 01 = 5.

Regarding the existence of Gately points for this particular game, we note that the minimax op-
M (v)-v _ My(v)-v, _ Ms(v)-03
X1—01 X2—02 X3—03

timisation problem can be re-stated here as the balance equation

resulting into % = x% = x% which leads to a unique Gately point g; = 4% and g, = g3 = % Note

that this unique Gately point can also be computed by the Gately value formula stated in equation

(13).

In comparison, the Shapley value of this game is given by ¢ = (2% lg , 1% ). ¢

The next theorem gathers some properties of three-player games regarding the relationship between
the Core and the Gately points of these games. These properties generalise the insights presented

through the previous two examples.

Theorem 4.2 Letv € VN be a three-player game on N = {1,2,3}. Then the following properties
hold:

(a) If the game v is semi-regular, then the Gately value is in its Core, g(v) € C(v) # @.

(b) IfC(v) # @, then the game v is semi-regular and g(v) € C(v).

Proof. To show assertion (a), we first consider a three-player game v € VV that is semi-regular, but
not regular. Hence, M;(v) = v; for i = 1, 2, 3, implying that v; +v,+v3 = M;(v) +M;(v) +M5(v) = 0(N).
Simple computations show that there is a unique Core imputation given by C(v) = { (v1,02,03) } =
{ (M;(v), Mz(v), M3(v) ) } # @. Furthermore, it is easily established that the unique Gately point is
well-defined and given by g(v) = (v1,v2,0v3) € C(v).

Next, we assume that v is regular in the sense that v; + v + v3 < v(N) < M;(0) + Mz (v) + M3(v),
v;i < M;(v) for all i = 1,2,3 and, without loss of generality, v; < M;(v). Hence, it holds that
v(12)+v(13)+0(23) < 20(N). Furthermore, it follows that 3uv(N)—v(12) —0(13) —v(23) —01 —vy—v3 =
2 (M;(v) —v;) > 0.

Now define for every i = 1,2,3

B 20(N) —0v(12) — 0(13) —v(23)
"~ 30(N) —0(12) —0(13) —0(23) —0; — vy — 0

i

(M;(v) —v;)
3

Note that ; > 0 for all i = 1,2, 3 and that, in particular, ; > 0.

We now note the following properties of these introduced quantities:

« First, regarding their sum,

n+n+n=

20(N) —0(12) — 0(13) — v(23)
(V) — (1) — o(D3) = () ~ Ty 2 M o)

= ZM,-(U) —o(N) = 20(N) — 0(12) — v(13) — v(23).
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« Second, for every i =1,2,3:

_ Zij(U) —o(N)
2 (M;(0) = 0;)

(M;(v) —v;) < M;(v) — ;.

« Finally, for every i = 1, 2, 3 we argue that g;(v) = M;(v) — ;. Indeed,

_ Mi(v) — v 3 .
gi(v) = S M@ 2] (a(N) Zvj)

2 Mj(0) —o(N)
% (M;(0) =)

J

= M;(v) + (v; = M;(v) ) = M;(0) — n;.

Using the argument of Vorob’ev (1977, 4.12.1), we now claim that g(v) € C(v) using the construction

above. We check the conditions for g(v) being a Core selector:
First, for every i = 1,2,3: g;(v) = M;(0) — n; > M;(v) — (M;(v) —v; ) = v;.

Second, we can check for each 2-player coalition the Core conditions. For {1, 2} it is easy to see that

91(0) + g2(v) = M1(0) + Mz(v) — 1 — 12
=20(N) —0(23) —0(13) —n1 — 12
=0(12) +n3 > 0(12)

Similar arguments show that g; (v) + g3(v) > v(13) and g2(v) + g3(v) > v(23).

Together with g1 (v) + g2(v) + g3(v) = v(N), this completes the proof of assertion (a).

To show assertion (b), assume that for three-player game v € VN with N = {1, 2,3} it holds that
C(v) # @. Hence, there exists some (x1, x2, x3) € R3 with x; + x3 + x3 = 0(N), x; > v; fori = 1,2, 3,
and x; + x2 > 0(12), x; + x3 > 0(13), and x3 + x3 > 0(23).

Adding the last three inequalities results in the conclusion that
20(N) = 2x1 + 235 + 233 > 0(12) + 0(13) +0(23),
which in turn leads to the conclusion that
M;(v) + My (v) + M3(v) = (v(N) —0(12)) + (v(N) —0v(13)) + (v(N) — 0(23)) = v(N).

Furthermore, from x; > v; for i = 1, 2, 3 it follows that v (N) = x; + x5 + X3 > 01 + 03 + 03.

These two inequalities leads us to the conclusion that v; + v + v3 < 9(N) < M;(v) + My (0) + Ms(0),
implying that o is indeed essential.

Furthermore, v(N) = x; + (x2 + x3) > v; +v(23) implying that M;(v) = v(N) — 0(23) > 0. This
argument can be replicated for players 2 and 3, leading to the desired conclusion that v is indeed

semi-regular. The conclusion that, therefore, g(v) € C(v) follows from assertion (a). [

An immediate insight from Theorem 4.2 is that for every three-player game with a non-empty Core,

the Gately value is a Core selector:
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Corollary 4.3 Letv € VN with N = {1, 2,3} be a three-player cooperative game. Then g(v) € C(v) if
and only if C(v) # @.

Similar arguments as the ones used in the proof of Theorem 4.2(b) show that the Gately value of
certain semi-regular three-player games is equal to the vector of marginal contributions and it is the

unique Core imputation if the Core is non-empty.

Corollary 4.4 Letv € VN with N = {1,2,3} be a three-player cooperative game such that v is
an essential cooperative game such that v(12) + v(13) + v(23) = 20(N). Then the unique Gately
point coincides with the Nucleolus of the game, being equal to the vector of marginal contributions
9(v) = N(v) = (Mi(v), Mz(v), M3(0) ).

Furthermore, if C(v) # @, it holds that C(v) = {g(v)} = {N(v)}.

The conclusions about the equivalence of the Gately value and the Nucleolus of the three-player
game in case that C(v) = @, stated in Corollary 4.4, follows from application of Leng and Parlar
(2010, Theorem 1).

a-Gately values and the Core of 3-player games The analysis of the relationship between
a-Gately values and the Core of a three-player game is more complex if we look beyond the standard
Gately value (@ = 1).

The next example shows that there exist three-player games in which a-Gately values are in the

Core for a certain closed interval of a values bounded away from zero.

Example 4.5 Consider a zero-normalised three-player game v with N = {1,2,3} and v; = 0 for
i=1,23,0(12) =12,0(13) = v(23) = 7 and v(N) = 16. Clearly, this game is regular.

We easily compute that the marginal contributions are given by M; (v) = My(v) = 9 and M3(v) = 4.
For any a > 0 we compute the a-Gately values as

6-9% 16 - 4%

1
o — 4 —_ o —
91(0)—92(0)—2_ andg3(v)_2.9a+4a

9 + 44

We note that there are essentially two characteristic inequalities to determine whether the a-Gately

value in the Core of v:

97 (v) + g5 (v) > 0(12) = 12 and g7 (v) + g5 (v) = g5 (v) + g5 (0) > 0(13) =0v(23) =7

Therefore, the range of « values for which the a-Gately value is in the Core of this game is given by

a € A* = [ nilnz oo) = [4.00). Note 1 € A*, implying that g(v) € C(o).

In9-In4’
The Shapley value of this game is computed as ¢ = (6%, 6%, 3%) = g% (v) € C(v) with a® =

In37-1n22 .
370022 » 0.6411. ¢

The next example considers a game with a large set of imputations and a minimal Core, consisting
of a single imputation. For this example we show that the original Gately value is the only Core

selector, while all a-Gately values for a # 1 are outside the Core.
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Figure 1: The Core and the trajectory of a-Gately values in Example 4.6.

Example 4.6 Consider a regular three-player game with N = {1,2,3} and v given by v; = v, = v3 =
0,0(12) = 5,0(13) = 6,v(23) = 7 and v(N) = 9. Note that I(v) = {x € R? | } x; = 9} and that the
Core is a singleton with C(v) = {(2,3,4) } = { M(v) }.

We note that for this game g(v) = M(v) selects the unique Core imputation. However, for all & > 0

with ¢ # 1 we have that

9
“(0) = ——— (2%,3%,4%) # (2,3,4).

§0) = s ( )£ (23,9)
Note that g%(v) — (3,3,3) as @ | 0 and g*(v) — (0,0,9) as @ — oo. This convergence is not
monotone as one would possibly expect, since g5 (v) attains a maximal value of gg‘(v) ~ 3.0291 at
NS In3-In2 | .
a =g In| 23222 ] ~ 0.4951.
The results of the analysis of this example are summarised in Figure 1. The yellow simplex represents

the space of imputations I(v), while the Core is the unique imputation depicted as a blue point. The
red curve denotes the set of a-Gately values, {g*(v) | @ > 0}.

Finally, we compute the Shapley value as ¢ = (31, 3, 23) ¢ C(0), which cannot be expressed as a
proper a-Gately value. ¢

Exploring the relationship of the Gately value with other Core selectors As observed, the
Gately value can be defined for any three-player cooperative game and in case of nonempty Core it
behaves as a Core selector. There we also discussed the relationship of the Gately value with one of
the main Core selectors, the Core-center introduced in Gonzalez-Diaz and Sanchez-Rodriguez (2007).
This solution concept, defined only for games with nonempty Core, satisfies properties as efficiency,
individual and coalitional rationality, equal treatment of equal, the dummy player property, among

others.
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The next example addresses the relationship of the Gately value with the Core center concept.
The Core center of a game v with a non-empty Core C(v) # @ is defined as pu(v) = E(C(v)), being
the average of all Core imputations with equal weight or, equivalently, the expected Core allocation.

Alternatively, the Core center is the center of gravity of the Core of a game.

Example 4.7 Consider the class of three-player games with v; = 0 for i = 1,2,3, v(12) = «
v(13) = f,and v(23) = ov(N) = 1, where 0 < a < f < 1. We compute that C(v) = {(0,£,1—1) | 0 <
a<t<l-f}#ofora+p<1.

5

For a + < 1 we compute the Core center and the Gately value as

=0, L
9(0) ( 2—a-f 2-a-p
For a + f < 1, we now identify that p(v) = g(v) if and only if @ =  or & + = 1. This shows that

coincidence of these two solution concepts is rather accidental. ¢

Another solution concept explicitly designed as Core selector is the Alexia value introduced by Tijs
et al. (2011). This solution concept only exists for games with nonempty Core, the class of balanced
games. Particularly, the Alexia value is obtained by averaging all the so-called lexinals, where a
lexinal is defined as a lexicographical maximum of the Core with respect to an arbitrary order on
the players. On the domain of balanced games, the Alexia value satisfies properties as individual
rationality, efficiency, symmetry, and the dummy player property. In the three-player clan game
discussed in Example 3.13 of Tijs et al. (2011), we compute that the Gately value is (4, 4, 2), the
Nucleolus is (% 1745, %) and the Alexia value is (26—5 % 16—0).

We conclude that the Gately value is rather different from many of the Core selectors considered
in the literature. Furthermore, the Gately value is defined for the much wider class of regular games
than the class of balanced games, which admit non-empty Cores. This justifies a closer look at a
comparison with the Shapley value, which is defined over the complete space of all cooperative

games. This is explored in the next section.

5 Gately values of n-player games

In this section we look at the relationship of Gately values and the Core as well as the Shapley
value of arbitrary n-player games. We first consider the Gately value and its membership of the
Core. Subsequently, we consider the relationship between the Shapley and Gately values. The next

example illustrates the issues of the questions we investigate here.'?

Example 5.1 Consider a regular zero-normalised four-player game v with N = {1,2,3,4} and
v; =0foralli € N,o0(12) = 8, 0(13) = v(14) = v(23) = v(24) = v(34) = 1, v(123) = v(124) = 5,
v(134) = v(234) = 4, and v(N) = 12. We note that the Core of this game is non-empty, since

12We remark that Littlechild and Vaidya (1976) already provided an example of a four-player game in which the Gately
value is not in the non-empty Core of that game.
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(45, 43,13, 13) € C(o).
From these worths, we derive that M(v) = (8, 8,7, 7). From this it is easy to establish that the Gately
value of this game is given by g = (3% 3%, 2%, 2% ). Clearly, g ¢ C(v). ¢

In the following analysis we particularly focus on the conditions on n-player games under which

g(v) € C(v). We establish some full characterisations of these equivalences.

5.1 Gately values and the Core

The main condition for which a “symmetric” or “anonymous” cooperative game has a non-empty

o5 < 28 (Shubik, 1982,

page 149). This condition has been referred to as “domination by the grand coalition” by Chatterjee

Core has been identified as the condition that for all coalitions S € 2V :

et al. (1993) and as “top convexity” by Jackson and van den Nouweland (2005). We generalise this
condition to identify when the @-Gately value is in the Core of a regular, zero-normalised cooperative

game.

Definition 5.2 Letv € VV be a semi-standard cooperative game and let a > 0. The cooperative game

v is said to be a-top dominant if for every coalition S € 2V

[U(S) - Zvj

jeSs

.Z(Mj(v)—vj)a< [U(N)—Zoj‘.Z(Mj(v)—vj)a. (22)

jeN jeN jeSs

For a = 1 we refer to the started property as “top dominance’.

First we remark that }’;c¢ (M;(v) —v;)® > 0 for every semi-standard cooperative game v € VN
and every a > 0.
Furthermore, the concept of a-top dominance is akin to the notions listed above in the sense

that for a semi-standard zero-normalised game v € V(I)‘I , property (22) can be rewritten as

v(S) < o(N)
ZjeS Mj(v)a h ZjeN Mj(U)a

for 3 jen Mj(0)* > ¥ jes Mj(v)* > 0. Moreover, implementing & = 0, the notion of a-top dominance
clearly generalises the notion of top convexity, as top convexity is equivalent to 0-top dominance
for zero-normalised games. Indeed, for zero-normalised game v € VY we straightforwardly derive
2jes M;.)(v) = |S|, immediately leading to the conclusion that 0-top dominance is the same as top
convexity.

The next theorem generalises the insights of Theorem 4.2 to games with arbitrary player sets.

Theorem 5.3 Let & > 0. A standard cooperative game v € VN is a-top dominant if and only if
g%(v) € C(v).

Proof. Let v € VV be standard and let a > 0.
Now ¢%(v) € C(v) if and only if it holds that for every coalition S € 2 2jes gj‘(v) > 0(S). This is
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equivalent to the condition that for every coalition S € 2N :

Zvi + Dies (Mi(v) —0;)* (U(N) - Z Uj) > 0(S)

ics ZjeN (Mj(v) -0 )a JEN

From v being standard, it follows that };c 5 (M;(v) — v; )* > 0. Hence, the above is equivalent to

the condition that for every coalition S € 2V:
Z (Mi(v) — Ui)a R (Z)(N) — Z Z)j) > Z (Mj(U) —-; )a . (ZJ(S) - Zvi)
i€S JEN JEN i€S

This is exactly the a-top dominance property. ]

Properties of top dominant games The next definition introduces a reduced notion of super-
additivity that fits with top dominance. This form of superadditivity is defined as “partitional”
superadditivity.

Definition 5.4 A cooperative gamev € VN is partitionally superadditive if for every coalition
S C N it holds that v(S) + (N \ S) < v(N).

The next theorem shows that top dominant games always satisfy regularity as well as the partitional

superadditivity property defined above.

Theorem 5.5 Leto € VN be a standard cooperative game. If the game v is a-top dominant for some

a > 0, then v is regular as well as partitionally superadditive.

Proof. Let v € VV be a standard game and let « > 0 be such that v is a-top dominant. Hence,
Yjen (My(j) —v; )% > 0and Yjes (My(j) —v; )% > 0 for every coalition S C N.

We first show that v is essential, together with the hypothesis that v is standard, implying that v is
regular.

When we apply the a-top dominance property to the coalition N — i for any i € N we arrive at

(U(N—i)—zvj) ) Z (My(j) — v )" < (v(N)—Zuj) -Z(Mu(j)—vj)a

J#i JEN JEN J#i

Adding these inequalities over all i € N we arrive at the conclusion that

Z(v(N—i)—Zvj) 3 (Ma() = 07)" < (v(N)—Zv;)ZZ(MUU)—vj)“

ieN J#i jeN jeN ieN j#i
=(n-1) (U(N) - Zoj) D (Mol) = )"
jeN jeN

Z(U(N—i)—zoj)s (n—l)(U(N)—Zvj)

j#i JEN
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This implies that

D" Mi(0) > o(N). (23)

ieN

Next, suppose to the contrary that v(N) < 3 ;cn vj. From v being a standard game, there is some

i € N with M;(v) > v;. We can apply the a-top dominance property to S = {i} and derive that

0= (v; —v;) - Z(Mj(v) -0;)% < (U(N) - Z Uj) - (M;(0) —v;) <0

JEN JEN

which is impossible. Therefore, we conclude that o(N) > ;e v; and, together with (23), we have

shown the assertion that v is essential.

Next we show that v is partitionally superadditive.

Let S € N be some coalition. Then, from a-top dominance, it holds for S that

(v<5) - Zvj) ) (My(0) = 0;)° < (o(N) -, vj) ) (Mi(0) —0)°

Jj€ES ieEN JjEN i€S
o(N\S) = > o] ) (Mi(o) = 01)" < (o(N)—Zvj)- > (Mi(o) —0;)"
JEN\S ieN JjEN ieN\S

Adding these two inequalities leads to the conclusion that
(U(S) +o(N\S)- > vj) ) (Mio) =) < (v(N) -, vj) - (Mi(0) =0;)°
JjEN ieEN JEN ieN

Since Y,y (M;(v) —0;)® > 0 for any a > 0, we have shown that

0(5)+U(N\5)—ZOJ<U(N)—ZUJ

JEN JjeEN
and, hence, v(S) + o(N \ S) < v(N). We conclude that v is indeed partitionally superadditive. ~m
Theorems 5.5 and 5.3 now immediately imply the following corollary.

Corollary 5.6 Letv € VN be a standard cooperative game and let o > 0. If g*(v) € C(v), thenv is

regular and partitionally superadditive.

One can ask oneself whether the condition of top dominance can be simplified or linked to other
regularity properties of cooperative games. As shown in Theorem 5.5 it is clear that top dominance
is closely related to the superadditivity property that is widely used in cooperative game theory.

The next example shows that top dominance is actually strictly weaker than superadditivity.

Example 5.7 Consider a regular and zero-normalised three-player game with N = {1,2,3} and v

given by v; = 0 for i = 1,2,3, 0(12) = 9(13) = —1, v(23) = 0 and 0(N) = 1. We note that v is not
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superadditive, since v; + v, = 0 > v(12) = —1.

However, for any a > 0 we remark that

o(N) _ 1
M (0)7 + My () + My ()% 1208 0

v(12) -1

M)+ My(o)e  142% O
v(13) -1

M)+ Ma(0)e 1427 "
v(23) 3

My ()% + M3(0)®

Hence, we conclude that v indeed satisfies a-top dominance for every a > 0.

Furthermore, we determine easily that M;(v) = 1 and M, (v) = M;(v) = 2, leading to the conclusion

that for every a > 0 the Gately values are given as g7 = mﬁ and g5 = g5 = 1&%
It can also easily be checked that for every a > 0: g*(v) € C(v). ¢

5.2 Comparing the Gately and Shapley values

The Shapley value (Shapley, 1953) has achieved the status as being the prime solution concept for
TU-games. It sets a benchmark for assessing the suitability of alternative solution concepts. In this
context it is suitable to consider for what classes of TU-games such alternative solution concepts
lead to exactly the same allocation as the Shapley value.

We show that the Shapley and Gately values coincide on narrow, but highly relevant, classes
of games that satisfy rather strong regularity properties. Theorem 5.9 below identifies a class of
structured games that have rather wide applicability. This class is founded on strong conditions on
the class of constituting coalitions and the corresponding unanimity games.

We recall for the benefit of the next analysis that all cooperative games can be represented
through the unanimity basis of VV based on (6). Hence, every game v € VV can be written as
0= Ysen, As(v)-us, whereIl, = {S € 2N | As(v) # 0} is the class of relevant constituting coalitions
and A,(S) # 0 is the corresponding Harsanyi dividend of coalition S € IT, in game .

We also recall that for any game v € V¥ with corresponding representation v = Y511, As(0) - us,

the Shapley value of v is defined as ¢(v) € RN given by

Ay (S
¢i(v) = Z |5(| ) for every i € N. (24)
Sell,: ieS

The next definition introduces some relevant classes of regular games.

Definition 5.8 Let N = {1,...,n} be a set of players and letk € {2,...,n—1}. A gamev € VN on
N is denoted as ak-game if v is regular and v can be written asv = Y.gc1, Ao(S) us such that |S| = k

for all constituting coalitions S € I1,. The subclass of k-games on N is denoted by Vi‘[ c V¥,

The subclass of 2-games has been investigated in the literature on its properties. In particular,

van den Nouweland et al. (1996) and van den Brink et al. (2023) show that for 2-games the Shapley
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value coincides with the Nucleolus and the 7-value. It might not be a surprise that we can show for

all subclasses of k-games the property that the Gately value coincides with the Shapley value.

Theorem 5.9 Let N = {1,...,n} be a set of players and let k € {2,...,n — 1}. For every k-game
vE VkN it holds that g(v) = ¢(v).

Proof. Let N = {1,...,n} be a set of players and let k € {2,...,n — 1}. First, we remark that for
k > 2 all k-games are zero-normalised by definition.

Now, let v € Vlkv be a k-game. Hence, |S| = k for all S € II,. Assume that |II,| = m is the number of
the constituting coalitions of the game v.

Next, we introduce some additional notation. For every i € N we letII; = {S € II, | i € S}. Then

the Shapley value of player i € N can be written as

$:(v) = Z B(S) =1 Z Ay(S) =% where A; = Z Ay(S).

Sell; |S| Sell; Sell;

Regarding the determination of the Gately value, we note that the marginal contribution of i € N is

now given by

Mi@) =o(N)=o(N =) = > A= >, Au(S)= ) Au(S) = A

Sell, Sell,: i¢S Sell;

Furthermore, this implies that 3’ ;e M;i(0) = X ;en Aj = k - v(N). Hence, we have determined that
forie N:

M;(v) A; A;
i(v) = g———o(N) = ‘0(N) = — = ¢i(0).
9:0) = 5 M) Eo(N) P
This shows the assertion of the theorem. ]

Based on Theorem 1 and Corollary 1 of van den Brink et al. (2023) in combination with Theorem 5.9,

we can determine another characterisation of the Gately value for the subclass of 2-games:

Corollary 5.10 On the subclass of 2-games VY, the Gately value is the unique value that satisfies the

balanced externalities property in the sense that for every v € VJZV witho = Ygem, Ao(S) us:

gi(0) = ) (9;(0) = g;(0™) (25)

j#i
wherev™! = 2rern;i Do(T) ur where O,/ ={Tell,|i¢T}

The reverse of Theorem 5.9 does not hold. There are other classes of games with strong regularity
properties that are not k-games and on which the Gately value coincides with the Shapley value.

The next proposition introduces such a subclass of highly regular games.

Proposition 5.11 Letv € VY be aregular game written asv = Ygcy, Ao(S) us. Assume thatn = k-m,
where k,m € N with k # m, such that 11, = I* U TI"™, where I1* is a partitioning of N into m sets of
size k and II™ is a partitioning of N into k sets of size m.

If there exists some A # 0 such that A,(S) = A for all S € 11, then g(v) = ¢$(v).
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Proof. Let i € N be an arbitrary player.

Due to the structure of the game, player i € N is member of exactly one coalition S € IT* and one
coalition T € IT™. Hence, it easily follows that ¢;(v) = % + %.

To compute the Gately value, we note that M;(v) = 2A and ¥ jeny M;(v) = n - 2A = 2kmA. Further-
more, 0(N) = (k + m)A, so the Gately value for player i € N can be computed as

2A k+m
gi(v)zm(k+m)A: m A:%+%:<D,-(v).
This shows the assertion. ]

For games that do not satisfy the property stated in Theorem 5.9, the Gately value is only very rarely
equal to the Shapley value. The next example discusses a convex five-player game in which the

Gately value is not in the Core, while the Shapley value is a Core selector (Shapley, 1971).

Example 5.12 Let N = {1,2,3,4,5} and let v = uj, + 3u3ys. This game is convex with o(N) = 4 and
the marginal contribution vector M = (1,1, 3,3, 3). It is easy to see that the Shapley value is given
by ¢ = (%, %, 1,1,1) and the Gately value is given by g = (1;41, %, %, %, %)

We note that ¢ € C(v), while g ¢ C(v) since g; + g, = % <1=0(12).

We remark that the game v discussed here does not satisfy either of the descriptions introduced in
Theorem 5.9 and Proposition 5.11, but that the game has a structure that is similar to the structure

of the class of games considered in Proposition 5.11. ¢

6 Concluding remarks

The main contribution of this paper is the investigation of the relationship between the Gately value
and other solution concepts on the class of regular cooperative games. In particular, we explore
Gately’s original impetus for defining the Gately value, namely as a Core selector ,and under what
conditions the Gately value, certain Core selectors, and the Shapley value coincide.

We have also proposed and investigated a generalisation of Gately’s conception in which the
definition of a player’s propensity to disrupt is modified by imposing a weight on the denominator.
This weight represents an intensity parameter that measures how much more or less weight a player
puts on her own loss in relation to the loss of all other players.

The provided axiomatisation (Theorem 3.12) is clearly founded on the axiomatisation of the
r-value by Tijs (1987). The 7-value was further axiomatised by Calvo et al. (1995). The latter
contribution shows that in general axiomatisations of compromise values—such as the r-value as
well as the Gately value considered here—can be rather intractable and unsatisfactory. It is an open
research question whether an accessible axiomatisation of the Gately value and other compromise
values can be devised that go beyond the straightforward axiomatisation framework introduced by
Tijs (1987).

In Gilles and Mallozzi (2023), we apply the Gately value to develop and study an innovative
method to measure centrality in social networks consisting of directed relationships. In this method-

ology, a social network is converted into a cooperative game by assigning the number of external
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relationships of each coalition as a worth to that coalition. These are known as successor representa-
tions of these social networks.

Subsequently, a cooperative game theoretic solution concept can be applied to the successor
representation to define a centrality measure. The Shapley value results in the f-centrality measure
(van den Brink and Gilles, 2000), while in Gilles and Mallozzi (2023) we apply the Gately value to
the successor representation to arrive at the Gately centrality measure. Subsequent analysis shows
that the Gately centrality measure can be fully axiomatised on the subclass of hierarchical social
networks. It is shown that the Gately measure deviates in one important characteristic from the
B-measure, the restricted proportionality property. On the other hand, the Gately measure coincides
with the f-measure on the subclass of weakly regular hierarchical networks (Theorem 5).

This application of the Gately value shows that Gately’s approach leads to innovative and fruitful

ways to investigate social situations beyond the confines of TU-games only.
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