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Abstract

We introduce a new network centrality measure founded on the Gately value for cooperative

games with transferable utilities. A directed network is interpreted as representing control or

authority relations between players—constituting a hierarchical network. The power distribution

of a hierarchical network can be represented through a TU-game. We investigate the properties

of this TU-representation and investigate the Gately value of the TU-representation resulting

in the Gately power measure. We establish when the Gately measure is a Core power gauge,

investigate the relationship of the Gately with the 𝛽-measure, and construct an axiomatisation

of the Gately measure.
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1 Introduction

The concept of network centrality has emerged from sociology, social network analysis and network

science (Newman, 2010; Barabási, 2016) into the field of cooperative game theory, giving rise to

game theoretic methods to measure the most important and dominant nodes in a hierarchical social

network (Redhead and Power, 2022). The underlying method is to construct a cooperative game

theoretic representation of characterising features of a network and to apply cooperative game

theoretic analysis to create centrality measures for these networks.
1

We limit ourselves to directed networks as representations of collections of hierarchical or

control relationships between the constituting players in a network. Such hierarchical relationships

can be found in employment dynamics between managers and subordinates, the interaction between

a professor and her students, rivalry between different sports teams based on past performance

between them, or the connections between a government agent and the individuals they oversee.

We refer to these relationships as “hierarchical” since it implies that the predecessor node has some

level of control or authority over the successor node.
2

Taking this interpretation central, we refer to

these directed networks as hierarchical.

A hierarchical relationship is between a predecessor and a successor, where the predecessor

exercises some form of control or authority over the successor. The most natural representation is

that through a TU-game that assigns to every group of players their “total number of successors”,

which can be interpreted in various ways. We consider the two standard ways: Simply counting the

successors of all members of the group, i.e., the number of players that have at least one predecessor

that is member of the group; or, counting the number of players for which all predecessors are

member of that group.
3

We show that these two TU-representations are dual games. We remark that

van den Brink and Borm (2002) already characterised the main “strong” successor representation as

a convex game (Shapley, 1971), implying that its dual “weak” successor representation is a concave

game.

A power gauge for a network is now introduced as a vector of weights that are assigned to players

in the hierarchical network that represent or measure each player’s authority in that network. A

power measure is now introduced as a map that assigns to every hierarchical network a single power

gauge. In this paper we investigate some power measures that assign such gauges founded on game

theoretic principles related to the two TU-representations of hierarchical networks considered here.

In particular, each simple hierarchical network—in which each player has at most one predecessor—

has a natural power gauge in the form of the outdegree of each node in the network, representing

the number of successors of a player in that network.

Application of the Shapley value (Shapley, 1953) to the successor representations results in the

1
We refer to Tarkowski et al. (2018) for an overview of the literature on cooperative game theoretic constructions of

centrality measures in directed networks.

2
This authority can also be psychological and be influential on reputational features in the relationship. An example

might be the relationship between two chess players. One of these players can have a psychological advantage over

the other based on outcomes of past games between the two players and/or the Elo rating differential between the two

players.

3
As Tarkowski et al. (2018) point out, the successor representations are only one type of representation of a hierarchical

network. More advanced TU-representations have been pursued by Gavilán et al. (2023).
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𝛽-power measure (van den Brink and Gilles, 1994). This is the centre of the set of Core power gauges

for each network. In the 𝛽-measure the weight of a player is equally divided among its predecessors.

As such it has a purely individualistic foundation to measuring power.

Applying the Gately value of the successor representations results in a fundamentally different

conception of a power measure. Here, the set of dominated nodes is treated as a collective resource

that is distributed according to a chosen principle. In the Gately measure this is the proportional

distribution.
4

This stands in contrast to the individualistic perspective of the 𝛽-measure.

Since, the Gately measure is founded on such different principles, it is not a surprise that the

assigned Gately power gauges are not necessarily Core power gauges. We identify conditions under

which the assigned Gately power gauge is a Core power gauge in Theorem 3.3. In particular, we

show that for the class of (weakly) regular hierarchical networks, the Gately power measure assigns

a Core power gauge for that network.

We are able to devise an axiomatic characterisation of the Gately value as the unique power

measure that satisfies three properties. First, it is normalised to the number of nodes that have

predecessors, which is satisfied by many other power measures as well. Second, it satisfies “normality”

which imposes that a power measure assigns the full weight of controlling successors with no other

predecessors and the power measure of the reduced network with only those nodes that have

multiple predecessors. Finally, it satisfies a proportionality property in the sense that the power

measure assigned is proportional to how many successors a node has.

Finally, we address the question under which conditions the 𝛽- and Gately power measures are

equivalent. We show that for the class of weakly regular hierarchical networks this equivalence

holds. This is exactly the class of networks for which the Gately measure assigns a Core power

gauge. This insight cannot be reversed, since there are non-regular networks for which the Gately

and 𝛽-measures are equivalent.

Relationship to the literature The study of centrality in networks has evolved to be a significant

part of network science (Newman, 2010; Barabási, 2016). In economics and the social sciences there

has been a focus on Bonacich centrality in social networks. This centrality measure is founded on

the eigenvector of the adjacency matrix that represents the network (Bonacich, 1987). In economics

this has been linked to performance indicators of network representations of economic interactions

such as production networks (Ballester et al., 2006; Huremovic and Vega-Redondo, 2016; Allouch

et al., 2021). The nature of these networks is that they are undirected and, therefore, fundamentally

different from the hierarchical networks considered here.

Traditionally, the investigation of directed networks focussed on degree centrality—measuring

direct dominance relationships (van den Brink and Gilles, 2003; van den Brink and Rusinowska,

2022)—and on betweenness centrality, which considers the position of nodes in relation to membership

of (critical) pathways in the directed network (Bavelas, 1948; White and Borgatti, 1994; Newman,

2005; Arrigo et al., 2018).

Authority and control in networks has only more recently been investigated from different

4
We remark that other distribution principles can also be applied such as distributions founded on egalitarian fairness

considerations. This falls outside the scope of the present paper.
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perspectives. Yang-Yu et al. (2012) considers an innovative perspective founded on control theory.

More prevalent is the study of centrality in hierarchical networks through the 𝛽-measure and its

close relatives. van den Brink and Gilles (1994) introduced the 𝛽-measure as a natural measure

of influence and considered some non-game theoretic characterisations. The 𝛽-measure is closely

related to the PageRank measure introduced by Brin and Page (1998) and considered throughout the

literature on social network centrality measurement.

The 𝛽-measure has been linked to game theoretic measurement of centrality in directed networks

by van den Brink and Gilles (2000) and van den Brink and Borm (2002). The 𝛽-measure was identified

as the Shapley value of the standard successor representations as TU-representations of domination

and control in directed networks. van den Brink et al. (2008) develop this further through additional

characterisations. Gavilán et al. (2023) introduce other, more advanced TU-representations of

directed networks and study their Shapley values. They consider a family of centrality measures

resulting from this methodology.

Gómez et al. (2003), del Pozo et al. (2011) and Skibski et al. (2018) introduce and explore a

game theoretic methodology for measuring network power that is fundamentally different from

the methodology used in this paper and the literature reviewed above. These authors consider

a well-chosen TU-game on a networked population of players and subsequently compare the

allocated payoffs based on the Shapley value in the unrestricted game with the Shapley value of the

network-restricted TU-game. The normalisation of the generated differences now exactly measure

the network-positional effects on the players, which can be interpreted as a centrality measure.

Finally, with regard to the Gately value as a solution concept for TU-games, this conception

was seminally introduced for some specific 3-player cost games by Gately (1974). This contribution

inspired a further development of the underlying conception of “propensity to disrupt” by Littlechild

and Vaidya (1976) and Charnes et al. (1978), including the definition of several related solution

concepts. Littlechild and Vaidya (1976) also developed an example of a 4-player TU-game in which the

Gately value is not a Core imputation. More recently, Staudacher and Anwander (2019) generalised

the scope of the Gately value and identified exact conditions under which this value is well-defined.

This has further been developed by Gilles and Mallozzi (2023), which showed that the Gately value

is always a Core imputation for 3-player games, devised an axiomatisation for the Gately value for

arbitrary TU-games, and introduced a generalised Gately value founded on weighted propensities

to disrupt.

Structure of the paper Section 2 discusses the foundations of the game theoretic approach that

is pursued in this paper. It defines the successor representations and presents their main properties.

Furthermore, the standard solution concepts of the Core and the Shapley value are applied to these

successor representations. Section 3 introduces the Gately measure, which represents a different

philosophy of measuring the exercise of control and power in a network. We investigate when

the Gately measure assigns a Core power gauge to a network and we devise an axiomatisation

of the Gately measure. The paper concludes with a comprehensive comparison of the Gately and

𝛽-measures, identifying exact conditions under which these two measures are equivalent.
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2 Game theoretic representations of hierarchical networks

In our study, we focus on networks with directed links, where each link has specifically the interpre-

tation of being the representation of a hierarchical relationship. In a directed network, the direction

of a link indicates that one node is positioned as a predecessor while the other node is considered a

successor in that particular relationship. Here we interpret this explicitly as a control or authority

relationship. Therefore, we denote these networks as hierarchical throughout this paper.

In hierarchical networks, predecessors exercise some form of authority over its successors,

allowing the assignment of that control to that particular node. This results in a natural game

theoretic representation. We explore these game theoretic representations in this section and

investigate the properties of these games.

Notation: Representing hierarchical networks Let 𝑁 = {1, . . . , 𝑛} be a finite set of nodes,

where 𝑛 ∈ N is the number of nodes considered. Usually we assume that 𝑛 ⩾ 3. A hierarchical

network on 𝑁 is a map𝐷 : 𝑁 → 2
𝑁

that assigns to every node 𝑖 ∈ 𝑁 a set of successors 𝐷 (𝑖) ⊆ 𝑁 \{𝑖}.

We explicitly exclude that a node succeeds itself, i.e., 𝑖 ∉ 𝐷 (𝑖). The class of all directed networks on

node set 𝑁 is denoted as D𝑁 = {𝐷 | 𝐷 : 𝑁 → 2
𝑁

with 𝑖 ∉ 𝐷 (𝑖) for all 𝑖 ∈ 𝑁 }.5

Inversely, in a directed network 𝐷 ∈ D𝑁 , for every node 𝑖 ∈ 𝑁 , the subset 𝐷−1(𝑖) = { 𝑗 ∈ 𝑁 | 𝑖 ∈
𝐷 ( 𝑗)} denotes the set of its predecessors in 𝐷 . Due to the general nature of the networks considered

here, we remark that it might be the case that 𝐷 (𝑖) ∩𝐷−1(𝑖) ≠ ∅, i.e., some nodes can be successors

as well as predecessors of a node.

We introduce the following additional notation to count the number of successors and predeces-

sors of a node in a network 𝐷 ∈ D𝑁 :

(i) The map 𝑠𝐷 : 𝑁 → N counts the number of successors of a node defined by 𝑠𝐷 (𝑖) = #𝐷 (𝑖)
for 𝑖 ∈ 𝑁 ;

(ii) The map 𝑝𝐷 : 𝑁 → N counts the number of predecessors of a node defined by 𝑝𝐷 (𝑖) =

#𝐷−1(𝑖) for 𝑖 ∈ 𝑁 ;

The previous analysis leads to a natural partitioning of the node set 𝑁 into different classes based

on the number of predecessors of the nodes in a given network 𝐷 ∈ D𝑁 :

𝑁𝑜𝐷 = {𝑖 ∈ 𝑁 | 𝐷−1(𝑖) = ∅} = {𝑖 ∈ 𝑁 | 𝑝𝐷 (𝑖) = 0}

𝑁𝐷 = 𝑁 \ 𝑁𝑜𝐷 = {𝑖 ∈ 𝑁 | 𝑝𝐷 (𝑖) ⩾ 1}

𝑁𝑎
𝐷 = {𝑖 ∈ 𝑁 | 𝑝𝐷 (𝑖) = 1}

𝑁𝑏𝐷 = {𝑖 ∈ 𝑁 | 𝑝𝐷 (𝑖) ⩾ 2}

Note that 𝑁 = 𝑁𝑜
𝐷
∪ 𝑁𝐷 , 𝑁𝐷 = 𝑁𝑎

𝐷
∪ 𝑁𝑏

𝐷
. In particular, {𝑁𝑜

𝐷
, 𝑁𝑎

𝐷
, 𝑁𝑏

𝐷
} forms a partitioning of the

node set 𝑁 . We introduce counters 𝑛𝐷 = #𝑁𝐷 , 𝑛𝑎
𝐷
= #𝑁𝑎

𝐷
and 𝑛𝑏

𝐷
= #𝑁𝑏

𝐷
, leading to the conclusion

5
We emphasise that in our setting, hierarchical networks are not necessarily tiered or top-down. Hence, we allow

these networks to contain cycles and even binary relationships. This allows the incorporation of sports competitions and

other social activities to be represented by these hierarchical networks.
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that 𝑛𝐷 = 𝑛𝑎
𝐷
+ 𝑛𝑏

𝐷
.

The constructed partitioning informs the analysis of the game theoretic representation of the

hierarchical authority structure imposed by 𝐷 on the node set 𝑁 . Our analysis will show that for

certain centrality measures, the class of nodes that have multiple predecessors 𝑁𝑏
𝐷

plays a critical

role in the determination of the assignment of a power index to these predecessors.

The partitioning of the node set 𝑁 based on the structure imposed by 𝐷 ∈ D𝑁 allows further

notation to be introduced for every node 𝑖 ∈ 𝑁 :

• 𝑠𝑎
𝐷
(𝑖) = #

[
𝐷 (𝑖) ∩ 𝑁𝑎

𝐷

]
and 𝑠𝑏

𝐷
(𝑖) = #

[
𝐷 (𝑖) ∩ 𝑁𝑏

𝐷

]
, resulting in the conclusion that 𝑠𝐷 (𝑖) =

𝑠𝑎
𝐷
(𝑖) + 𝑠𝑏

𝐷
(𝑖).

• From the definitions above we conclude immediately that∑︁
𝑖∈𝑁

𝑠𝑎𝐷 (𝑖) = #𝑁𝑎
𝐷

and ∑︁
𝑖∈𝑁

𝑠𝑏𝐷 (𝑖) =
∑︁
𝑗∈𝑁𝑏

𝐷

𝑝𝐷 ( 𝑗) .

Classes of hierarchical networks The next definition introduces some normality properties on

hierarchical networks that will be used for certain theorems.

Definition 2.1 Let 𝐷 ∈ D𝑁 be some hierarchical network on node set 𝑁 .

(a) The network 𝐷 is weakly regular if for all nodes 𝑖, 𝑗 ∈ 𝑁𝑏
𝐷

: 𝑝𝐷 (𝑖) = 𝑝𝐷 ( 𝑗).
The collection of weakly regular hierarchical networks is denoted by D𝑁𝑤 ⊂ D𝑁 .

(b) The network 𝐷 is regular if for all nodes 𝑖, 𝑗 ∈ 𝑁𝐷 : 𝑝𝐷 (𝑖) = 𝑝𝐷 ( 𝑗).
The collection of regular hierarchical networks is denoted by D𝑁𝑟 ⊂ D𝑁𝑤 .

(c) The network 𝐷 is simple if for every node 𝑖 ∈ 𝑁𝐷 : 𝑝𝐷 (𝑖) = 1.

The collection of simple hierarchical networks is denoted by D𝑁𝑠 ⊂ D𝑁𝑟 .

In a regular network, each node has either no predecessors, or a given fixed number of predecessors.

Hence, all nodes with predecessors have exactly the same number of predecessors. In a weakly

regular network, each node has either no predecessors, or exactly one predecessors, or a given fixed

number 𝑝 ⩾ 2 of predecessors.

The notion of a simple network further strengthens the requirement of a regular network. It

imposes that all nodes either have no predecessors, or exactly one predecessor.

Furthermore, van den Brink and Borm (2002) introduced the notion of a simple subnetwork of a

given network 𝐷 ∈ D𝑁 on the node set 𝑁 . We elaborate here on that definition.

Definition 2.2 Let 𝐷 ∈ D𝑁 be a given hierarchical network on 𝑁 .

A network 𝑇 ∈ D𝑁 is a simple subnetwork of 𝐷 if it satisfies the following two properties:

5



(i) For every node 𝑖 ∈ 𝑁 : 𝑇 (𝑖) ⊆ 𝐷 (𝑖), and

(ii) For every node 𝑗 ∈ 𝑁𝐷 : 𝑝𝑇 ( 𝑗) = 1.

The collection of a simple subnetworks of 𝐷 is denoted by S(𝐷).

The collection of simple subnetworks of a given network can be used to analyse the Core of the

game theoretic representations of hierarchical games as shown below. It is easy to establish that a

hierarchical network 𝐷 is simple if and only if S(𝐷) = {𝐷}.

2.1 Game theoretic representations of hierarchical networks

Using the notation introduced above, we are able to device cooperative game theoretic representations

of hierarchical networks. We recall that a cooperative game with transferable utilities—or a TU-game—

on the node set 𝑁 is a map 𝑣 : 2
𝑁 → R such that 𝑣 (∅) = 0. A TU-game 𝑣 assigns to every group of

nodes 𝐻 ⊆ 𝑁 a certain “worth” 𝑣 (𝐻 ) ∈ R. A group of nodes 𝐻 ⊆ 𝑁 is also denoted as a coalition of

nodes, to use a more familiar terminology from cooperative game theory.

To embody the control or authority represented by a hierarchical network 𝐷 ∈ D𝑁 on the node

set 𝑁 as a cooperative game, we introduce some additional notation. For every group of nodes

𝐻 ⊆ 𝑁 we denote

𝐷 (𝐻 ) = { 𝑗 ∈ 𝑁 | 𝐷−1( 𝑗) ∩ 𝐻 ≠ ∅} = ∪𝑖∈𝐻 𝐷 (𝑖) (1)

as the (weak) successors of coalition 𝐻 in 𝐷 . A node is a (weak) successor of a node group if at least

one of its predecessors is a member of that group.

Similarly, we introduce

𝐷∗(𝐻 ) = { 𝑗 ∈ 𝑁 | ∅ ≠ 𝐷−1( 𝑗) ⊆ 𝐻 } = { 𝑗 ∈ 𝑁𝐷 | 𝐷−1( 𝑗) ⊆ 𝐻 } (2)

as the strong successors of coalition 𝐻 in 𝐷 . A node is a strong successor of a node group if all

predecessors of that node are members of that group. Clearly, strong successors of a node group are

completely controlled by the nodes in that particular group and full control can be exercised. This

compares to regular or weak successors of a node group over which the nodes in that group only

exercise partial control.

The next definition introduces the two main cooperative game theoretic embodiments of this

control over other nodes in a network.

Definition 2.3 Let 𝐷 ∈ D𝑁 be some hierarchical network on node set 𝑁 .

(a) The successor representation of 𝐷 is the TU-game 𝑠𝐷 : 2
𝑁 → N for every coalition 𝐻 ⊆ 𝑁

given by 𝑠𝐷 (𝐻 ) = #𝐷 (𝐻 ), the number of successors of the coalition 𝐻 in the network 𝐷 .

(b) We additionally introduce two partial successor representations as the two TU-games

𝑠𝑎
𝐷
, 𝑠𝑏
𝐷

: 2
𝑁 → N, which for every coalition 𝐻 ⊆ 𝑁 are given by 𝑠𝑎

𝐷
(𝐻 ) = #

[
𝐷 (𝐻 ) ∩ 𝑁𝑎

𝐷

]
and

𝑠𝑏
𝐷
(𝐻 ) = #

[
𝐷 (𝐻 ) ∩ 𝑁𝑏

𝐷

]
.
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(c) The strong successor representation of 𝐷 is the TU-game 𝜎𝐷 : 2
𝑁 → N for every coalition

𝐻 ⊆ 𝑁 given by 𝜎𝐷 (𝐻 ) = #𝐷∗(𝐻 ), the number of strong successors of the coalition 𝐻 in the

network 𝐷 .

The successor representation is also known as the “successor game” in the literature and the strong

successor representation 𝜎𝐷 as the “conservative successor game” on 𝐷 (Gilles, 2010). It is clear that

the four TU-games introduced in Definition 2.3 embody different aspects of the control exercised

over nodes in a given hierarchical network. In particular, these TU-games count the number of

successors that are under the control of nodes in a selected coalition.

Properties of successor representations The next list collects some simple properties of these

four games introduced here.

Proposition 2.4 Let𝐷 ∈ D𝑁 be some hierarchical network on node set𝑁 . Then the following properties

hold regarding the successor representations 𝑠𝐷 , 𝑠𝑎𝐷 , 𝑠
𝑏
𝐷
and 𝜎𝐷 :

(i) For every node 𝑖 ∈ 𝑁 : 𝑠𝐷 ( {𝑖} ) = 𝑠𝐷 (𝑖) and the worth of the whole node set is determined as

𝑠𝐷 (𝑁 ) = 𝑛𝐷 = #𝑁𝐷 .

(ii) 𝑠𝐷 = 𝑠𝑎
𝐷
+ 𝑠𝑏

𝐷
.

(iii) For every coalition 𝐻 ⊆ 𝑁 : 𝑠𝑎
𝐷
(𝐻 ) = ∑

𝑖∈𝐻 𝑠
𝑎
𝐷
(𝑖), implying that the partial successor represen-

tation 𝑠𝑎
𝐷
is an additive game.

(iv) For every coalition 𝐻 ⊆ 𝑁 : 𝑠𝑏
𝐷
(𝐻 ) ⩽ ∑

𝑖∈𝐻 𝑠
𝑏
𝐷
(𝑖).

(v) 𝜎𝐷 = 𝑠𝑎
𝐷
+ 𝜎̂𝐷 where for every coalition 𝐻 ⊆ 𝑁 : 𝜎̂𝐷 (𝐻 ) = 𝜎𝐷 (𝐻 ) − 𝑠𝑎𝐷 (𝐻 ) ⩽ 𝑠

𝑏
𝐷
(𝐻 ).

(vi) For every node 𝑖 ∈ 𝑁 : 𝜎𝐷 ( {𝑖} ) = 𝑠𝑎𝐷 (𝑖) and the worth of the whole node set is determined as

𝜎𝐷 (𝑁 ) = 𝑛𝐷 = #𝑁𝐷 .

These properties follow straightforwardly from the definitions, therefore a proof is omitted.

The next theorem collects some properties of the successor representations that have not been

remarked explicitly in the literature on cooperative game theoretic approaches to representations of

hierarchical networks.
6

Theorem 2.5 Let 𝐷 ∈ D𝑁 be some hierarchical network on node set 𝑁 . Then the following properties

hold for the successor representations 𝑠𝐷 and 𝜎𝐷 :

(i) The strong successor representation 𝜎𝐷 is the dual of the successor representation 𝑠𝐷 in the

sense that

𝜎𝐷 (𝐻 ) = 𝑠𝐷 (𝑁 ) − 𝑠𝐷 (𝑁 \ 𝐻 ) for all 𝐻 ⊆ 𝑁 . (3)

6
We recall that the unanimity game of coalition 𝐻 ≠ ∅ is defined by 𝑢𝐻 : 2

𝑁 → {0, 1} such that 𝑢𝐻 (𝑇 ) = 1 if and only

if 𝐻 ⊆ 𝑇 ⊆ 𝑁 . This implies that 𝑢𝐻 (𝑇 ) = 0 for all other coalitions 𝑇 ⊆ 𝑁 .
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(ii) The strong successor representation is decomposable into unanimity games with

𝜎𝐷 =
∑︁
𝑗∈𝑁𝐷

𝑢𝐷−1 ( 𝑗 ) . (4)

(iii) The strong successor representation 𝜎𝐷 is a convex TU-game (Shapley, 1971) in the sense that

𝜎𝐷 (𝐻 ) + 𝜎𝐷 (𝐾) ⩽ 𝜎𝐷 (𝐻 ∪ 𝐾) + 𝜎𝐷 (𝐻 ∩ 𝐾) for all 𝐻,𝐾 ⊆ 𝑁 .

(iv) The successor representation 𝑠𝐷 is concave in the sense that 𝑠𝐷 (𝐻 ) + 𝑠𝐷 (𝐾) ⩾ 𝑠𝐷 (𝐻 ∪ 𝐾) +
𝑠𝐷 (𝐻 ∩ 𝐾) for all 𝐻,𝐾 ⊆ 𝑁

Proof. Let 𝐷 ∈ D𝑁 be some hierarchical network on node set 𝑁 and let the TU-games 𝑠𝐷 and 𝜎𝐷 be

as defined in Definition 2.3.

To show assertion (i), let 𝐻 ⊆ 𝑁 , then it holds that

𝑠𝐷 (𝑁 ) − 𝑠𝐷 (𝑁 \ 𝐻 ) = 𝑛𝐷 − #𝐷 (𝑁 \ 𝐻 ) = 𝑛𝐷 − #{ 𝑗 ∈ 𝑁 | 𝐷−1( 𝑗) ∩ (𝑁 \ 𝐻 ) ≠ ∅}

= 𝑛𝐷 − #{ 𝑗 ∈ 𝑁 | 𝐷−1( 𝑗) \ 𝐻 ≠ ∅} = #{𝑖 ∈ 𝑁𝐷 | 𝐷−1(𝑖) \ 𝐻 = ∅}

= #{𝑖 ∈ 𝑁𝐷 | 𝐷−1(𝑖) ⊆ 𝐻 } = 𝜎𝐷 (𝐻 ).

This shows that 𝜎𝐷 is indeed the dual game of 𝑠𝐷 .

Assertion (ii) is Lemma 2.2 in van den Brink and Borm (2002) and assertion (iii) follows immediately

from (ii). Finally, assertion (iv) is implied by the fact that 𝑠𝐷 is the dual game of 𝜎𝐷—following from

assertion (i)—and 𝜎𝐷 is convex.

The duality between the successor representation and the strong successor representation implies

that some cooperative game theoretic solution concepts result in exactly the same outcomes for

both games. In particular, we refer to the Core, the Weber set, the Shapley value, and the Gately

value of these successor representations as explored below.

2.2 Some standard solutions of the successor representations

The cooperative game theoretic approach to measuring power or hierarchical centrality is based

on the assignment of a quantified control gauge to every individual node in a given hierarchical

network. A power or hierarchical centrality measure now refers to a rule or procedure that assigns

to every node in any hierarchical network such a gauge. In this section we set out the foundations

for this approach.

Definition 2.6 Let 𝐷 ∈ D𝑁 be some hierarchical network. A power gauge for 𝐷 is a vector 𝛿 ∈ R𝑁+
such that

∑
𝑖∈𝑁 𝛿𝑖 = 𝑛𝐷 .

A power measure on D𝑁 is a function 𝑚 : D𝑁 → R𝑁+ such that
∑
𝑖∈𝑁 𝑚𝑖 (𝐷) = 𝑛𝐷 for every

hierarchical network 𝐷 ∈ D𝑁 .

The normalisation of a power gauge for a network 𝐷 ∈ D𝑁 to the allocation of the total number

of nodes in 𝑁𝐷 is a yardstick that is adopted in the literature, which we use here as well. This
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normalisation is in some sense arbitrary, but it allows a straightforward application of the cooperative

game theoretic methodology as advocated here.

The game theoretic approach adopted here allows us to apply basic solution concepts to impose

well-accepted properties on power gauges and power measures. The well-known notion of the Core

of a TU-game imposes lower bounds on the power gauges in a given hierarchical network. This

leads to the following notion.

Definition 2.7 A Core power gauge for a given hierarchical network 𝐷 ∈ D𝑁 is a power gauge

𝛿 ∈ R𝑁+ which satisfies that for every group of nodes 𝐻 ⊆ 𝑁 :

∑
𝑗∈𝐻 𝛿 𝑗 ⩾ 𝜎𝐷 (𝐻 ) = #𝐷∗(𝐻 ).

The set of Core power gauges for 𝐷 is denoted by C(𝐷) ⊂ R𝑁+ .

The Core requirements on a power gauge impose that every group of nodes is collectively assigned

at least the number of nodes that it fully controls. This seems a rather natural requirement. The

following insight investigates the structure of the set of Core power gauges for a hierarchical

network.

Proposition 2.8 Let 𝐷 ∈ D𝑁 be some hierarchical network on node set 𝑁 . Then the following hold:

(i) If 𝐷 is a simple hierarchical network, then there exists a unique Core power gauge, C(𝐷) ={
𝛿𝐷

}
, where 𝛿𝐷𝑖 = 𝑠𝐷 (𝑖) for every node 𝑖 ∈ 𝑁 .

(ii) More generally, C(𝐷) is equal to theWeber set of 𝜎𝐷 , which is the convex hull of the unique Core

power gauges of all simple subnetworks of 𝐷 given by C(𝐷) = Conv

{
𝛿𝑇 | 𝑇 ∈ S(𝐷)

}
≠ ∅.

Proof. Let 𝐷 be a simple hierarchical network. Hence, 𝑝𝐷 (𝑖) = 1 for all 𝑖 ∈ 𝑁𝐷 . Therefore, for every

group of nodes 𝐻 ⊆ 𝑁 it holds that 𝜎𝐷 (𝐻 ) = 𝑠𝐷 (𝐻 ) =
∑
𝑗∈𝐻 𝑠𝐷 ( 𝑗). Therefore, 𝛿𝐷 as defined above

satisfies the Core requirement for every 𝐻 ⊆ 𝑁 .

Furthermore, suppose that 𝛿 ∈ C(𝐷). Then from 𝛿𝑖 ⩾ 𝑠𝐷 (𝑖) = 𝛿𝐷𝑖 for every node 𝑖 ∈ 𝑁 and∑
𝑗∈𝑁 𝛿 𝑗 = 𝑛𝐷 =

∑
𝑗∈𝑁 𝛿

𝐷
𝑗 it immediately follows that 𝛿𝑖 = 𝛿

𝐷
𝑖 for all 𝑖 ∈ 𝑁 . This shows that 𝛿𝐷 is

the unique Core power gauge for the simple hierarchical network 𝐷 , showing assertion (i).

Assertion (ii) follows immediately from Theorem 4.2 in van den Brink and Borm (2002) in combination

with assertion (i).

The 𝛽-measure A well-established power measure for hierarchical networks was first introduced

by van den Brink and Gilles (1994) and further developed in van den Brink and Gilles (2000) and

van den Brink et al. (2008). This 𝛽-measure is for every node 𝑖 ∈ 𝑁 defined by

𝛽𝑖 (𝐷) =
∑︁
𝑗∈𝐷 (𝑖 )

1

𝑝𝐷 ( 𝑗)
= 𝑠𝑎𝐷 (𝑖) +

∑︁
𝑗∈𝐷 (𝑖 )∩𝑁𝑏

𝐷

1

𝑝𝐷 ( 𝑗)
(5)

The following proposition collects the main insights from the literature on the 𝛽-measure.

Proposition 2.9 Let 𝐷 ∈ D𝑁 be a hierarchical network. Then the following properties hold:

(i) 𝛽 (𝐷) ∈ C(𝐷) is the geometric centre of the set of Core power gauges of 𝐷 .
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(ii) 𝛽 (𝐷) = 𝜑 (𝑠𝐷 ) = 𝜑 (𝜎𝐷 ), where 𝜑 is the Shapley value7 on the collection of all cooperative

games on 𝑁 .

3 The Gately power measure

Let 𝑣 : 2
𝑁 → R be a TU-game on the node set 𝑁 with

∑
𝑖∈𝑁 𝑣 ({𝑖}) ⩽ 𝑣 (𝑁 ) ⩽ ∑

𝑖∈𝑁 𝑀𝑖 (𝑣) where

𝑀𝑖 (𝑣) = 𝑣 (𝑁 ) − 𝑣 (𝑁 − 𝑖). Then the Gately value of the game 𝑣 is given by 𝑔(𝑣) ∈ R𝑁 , which is

defined for every node 𝑖 ∈ 𝑁 by

𝑔𝑖 (𝑣) = 𝑣 ({𝑖}) +
𝑀𝑖 (𝑣) − 𝑣 ({𝑖})∑

𝑗∈𝑁
(
𝑀 𝑗 (𝑣) − 𝑣 ({ 𝑗})

) [
𝑣 (𝑁 ) −

∑︁
𝑗∈𝑁

𝑣 ({ 𝑗})
]

(6)

The Gately value was seminally introduced by Gately (1974) and further developed by Littlechild

and Vaidya (1976), Charnes et al. (1978), Staudacher and Anwander (2019) and Gilles and Mallozzi

(2023).

We apply the Gately value to the two successor representations formulated above. We show that,

similar to the 𝛽-measure, both the regular successor representation and the conservative successor

representation result in the same Gately value, defining the Gately power measure.

Theorem 3.1 Let 𝐷 ∈ D𝑁 be a directed network on node set 𝑁 . Then

𝑔 (𝑠𝐷 ) = 𝑔 (𝜎𝐷 ) = 𝜉 (𝐷) (7)

where 𝜉 : D𝑁 → R𝑁 is introduced as the Gately power measure on the class of hierarchical networks

D𝑁 on 𝑁 with

𝜉𝑖 (𝐷) =


𝑠𝑎
𝐷
(𝑖) + 𝑠𝑏

𝐷
(𝑖 )∑

𝑗 ∈𝑁𝑏
𝐷

𝑝𝐷 ( 𝑗 ) 𝑛
𝑏
𝐷

if 𝑁𝑏
𝐷
≠ ∅

𝑠𝑎
𝐷
(𝑖) if 𝑁𝑏

𝐷
= ∅

(8)

for every node 𝑖 ∈ 𝑁 .

Furthermore, the Gately measure 𝜉 is the unique power measure that balances the propensities to disrupt

a network given by

𝑠𝑏
𝐷
(𝑖)

𝑠𝐷 (𝑖) − 𝜉𝑖 (𝐷)
=

𝑠𝑏
𝐷
( 𝑗)

𝑠𝐷 ( 𝑗) − 𝜉 𝑗 (𝐷)
(9)

over all nodes 𝑖, 𝑗 ∈ 𝑁𝐷 .

Proof. Let 𝐷 ∈ D𝑁 be such that 𝑁𝑏
𝐷
≠ ∅. Then its successor representation 𝑠𝐷 is characterised for

7
It is well-established that every TU-game 𝑣 : 2

𝑁 → R𝑁 can be written as 𝑣 =
∑
𝐻⊆𝑁 Δ𝑣 (𝐻 ) 𝑢𝐻 , where Δ𝑣 (𝐻 ) is the

Harsanyi dividend of coalition 𝐻 in the game 𝑣 (Harsanyi, 1959). Now, the Shapley value is for every 𝑖 ∈ 𝑁 defined by

𝜑𝑖 (𝑣) =
∑
𝐻⊆𝑁 : 𝑖∈𝐻

Δ𝑣 (𝐻 )
#𝐻

. Hence, the Shapley value fairly distributes the generated Harsanyi dividends over the players

that generate these dividends. The Shapley value was seminally introduced by Shapley (1953).
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every 𝑖 ∈ 𝑁 by

𝑠𝐷 (𝑁 ) = 𝑛𝐷
𝑠𝐷 ({𝑖}) = 𝑠𝐷 (𝑖) = #𝐷 (𝑖)

𝑠𝐷 (𝑁 − 𝑖) = 𝑛𝐷 − #

{
𝑗 ∈ 𝑁𝑎

𝐷 | 𝐷−1( 𝑗) = {𝑖}
}
= 𝑛𝐷 − 𝑠𝑎𝐷 (𝑖)

From this it follows that 𝑀𝑖 (𝑠𝐷 ) = 𝑠𝐷 (𝑁 ) − 𝑠𝐷 (𝑁 − 𝑖) = 𝑠𝑎
𝐷
(𝑖) for every 𝑖 ∈ 𝑁 . Since 𝑁𝑏

𝐷
≠ ∅, this

implies furthermore that 𝑠𝐷 (𝑖) ⩾ 𝑀𝑖 (𝑠𝐷 ) for every 𝑖 ∈ 𝑁 . Therefore, the Gately value can be applied

to this game.

From the previous we further derive that

𝑠𝐷 (𝑖) −𝑀𝑖 (𝑠𝐷 ) = #

{
𝑗 ∈ 𝑁 | {𝑖} ⊊ 𝐷−1( 𝑗)

}
= 𝑠𝑏𝐷 (𝑖)

and that∑︁
𝑗∈𝑁

𝑠𝐷 ({ 𝑗}) − 𝑠𝐷 (𝑁 ) =
∑︁
𝑗∈𝑁

𝑠𝐷 ( 𝑗) − 𝑛𝐷 =
∑︁
ℎ∈𝑁

𝑝𝐷 (ℎ) − 𝑛𝐷

=
∑︁
𝑗∈𝑁𝑏

𝐷

( 𝑝𝐷 ( 𝑗) − 1) =
∑︁
𝑗∈𝑁𝑏

𝐷

𝑝𝐷 ( 𝑗) − 𝑛𝑏𝐷 .

These properties imply that 𝑠𝐷 is a regular TU-game as defined in Gilles and Mallozzi (2023). This

implies that the Gately value applies to 𝑠𝐷 .

We now compute the Gately value of the successor representation 𝑠𝐷 . We note here that 𝑠𝐷 is a

concave cost game, implying that the reverse formulation of (6) needs to be applied. Hence, we

derive for every 𝑖 ∈ 𝑁 that

𝑔𝑖 (𝑠𝐷 ) = 𝑠𝐷 ({𝑖}) −
𝑠𝐷 ({𝑖}) −𝑀𝑖 (𝑠𝐷 )∑

𝑗∈𝑁
(
𝑠𝐷 ({𝑖}) −𝑀 𝑗 (𝑠𝐷 )

) · (∑︁
𝑗∈𝑁

𝑠𝐷 ({ 𝑗}) − 𝑠𝐷 (𝑁 )
)

= 𝑠𝐷 (𝑖) −
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁 𝑠
𝑏
𝐷
( 𝑗)

·
©­­«
∑︁
𝑗∈𝑁𝑏

𝐷

𝑝𝐷 ( 𝑗) − 𝑛𝑏𝐷
ª®®¬

= 𝑠𝐷 (𝑖) −
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

·
©­­«
∑︁
𝑗∈𝑁𝑏

𝐷

𝑝𝐷 ( 𝑗) − 𝑛𝑏𝐷
ª®®¬

= 𝑠𝐷 (𝑖) − 𝑠𝑏𝐷 (𝑖) +
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

· 𝑛𝑏𝐷

= 𝑠𝑎𝐷 (𝑖) +
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

· 𝑛𝑏𝐷 = 𝜉𝑖 (𝐷)

Similarly, the conservative successor representation 𝜎𝐷 for the hierarchical network 𝐷 is charac-
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terised for every 𝑖 ∈ 𝑁 by

𝜎𝐷 (𝑁 ) = 𝑛𝐷
𝜎𝐷 (𝑖) = 𝑠𝑎𝐷 (𝑖)

𝜎𝐷 (𝑁 − 𝑖) = 𝑛𝐷 − 𝑠𝐷 (𝑖)

For the conservative successor representation 𝜎𝐷 we derive from the above that 𝑀𝑖 (𝜎𝐷 ) = 𝑠𝐷 (𝑖),
implying that 𝜎𝐷 (𝑖) ⩽ 𝑀𝑖 (𝜎𝐷 ) for every 𝑖 ∈ 𝑁 . Also, 𝜎𝐷 (𝑖) < 𝑀𝑖 (𝜎𝐷 ) for some 𝑖 ∈ 𝑁 , since 𝑁𝑏

𝐷
≠ ∅.

Therefore, 𝜎𝐷 is regular as defined in Gilles and Mallozzi (2023). Hence, the Gately value applies to

𝜎𝐷 .

Since 𝜎𝐷 is a convex game, the formulation stated in (6) applies. Now, we compute that

𝑀𝑖 (𝜎𝐷 ) − 𝜎𝐷 (𝑖) = 𝑠𝐷 (𝑖) − 𝑠𝑎𝐷 (𝑖) = 𝑠
𝑏
𝐷 (𝑖)

and

𝑔𝑖 (𝜎𝐷 ) = 𝜎𝐷 ({𝑖}) +
𝑀𝑖 (𝜎𝐷 ) − 𝜎𝐷 ({𝑖})∑

𝑗∈𝑁
(
𝑀 𝑗 (𝜎𝐷 ) − 𝜎𝐷 ({ 𝑗})

) · (𝜎𝐷 (𝑁 ) −
∑︁
𝑗∈𝑁

𝜎𝐷 ({ 𝑗})
)

= 𝑠𝑎𝐷 (𝑖) +
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁 𝑠
𝑏
𝐷
( 𝑗)

· 𝑛𝑏𝐷 = 𝑠𝑎𝐷 (𝑖) +
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

· 𝑛𝑏𝐷 = 𝜉𝑖 (𝐷)

This shows the first equality in the assertion of the proposition.

Next, let 𝐷 ∈ D𝑁 be such that 𝑁𝑏
𝐷
= ∅. Then 𝑝𝐷 ( 𝑗) = 1 for all 𝑗 ∈ 𝑁𝐷 . This implies that for every

𝑖 ∈ 𝑁 : 𝑀𝑖 (𝑠𝐷 ) = 𝑠𝐷 ({𝑖}) = 𝑠𝐷 (𝑖). Hence, for 𝑖 ∈ 𝑁 :

𝑔𝑖 (𝑠𝐷 ) = 𝑠𝐷 ({𝑖}) = 𝑠𝐷 (𝑖) = 𝑠𝑎𝐷 (𝑖) = 𝜉𝑖 (𝐷) .

Finally, for every 𝑖 ∈ 𝑁 : 𝑀𝑖 (𝜎𝐷 ) = 𝑠𝐷 (𝑖) = 𝑠𝑏𝐷 (𝑖) = 0. Hence,

𝑔𝑖 (𝜎𝐷 ) = 𝜎𝐷 ({𝑖}) = 𝑠𝑎𝐷 (𝑖) = 𝜉𝑖 (𝐷) .

Combined with the previous case, this shows the first assertion of the proposition.

Finally, the second assertion of the proposition follows immediately from identifying the propensity

to disrupt (Gilles and Mallozzi, 2023, Definition 3.2) in the successor representation 𝑠𝐷 for some

game theoretic imputation𝑚 ∈ R𝑁 as

𝑀𝑖 (𝑠𝐷 ) − 𝑠𝐷 ({𝑖})
𝑚𝑖 − 𝑠𝐷 ({𝑖})

=
𝑠𝑏
𝐷
(𝑖) − 𝑠𝐷 (𝑖)
𝑚𝑖 − 𝑠𝐷 (𝑖)

=
𝑠𝑏
𝐷
(𝑖)

𝑚𝑖 − 𝑠𝐷 (𝑖)
.

Using the definition of a Gately point (Gilles and Mallozzi, 2023, Definition 3.2) and noting that

𝜉𝑖 (𝐷) = 𝑠𝐷 (𝑖) = 0 for every 𝑖 ∈ 𝑁𝑜
𝐷

, the second assertion of the theorem is confirmed.

The Gately power measure introduced in Theorem 3.1 is founded on fundamentally different princi-
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ples than the 𝛽-measure or other power measures. Now, the Gately power measure is member of a

family of values that considers the control exercise over the nodes in 𝑁𝑏
𝐷

to be a collective resource

in any hierarchical network 𝐷 ∈ D𝑁 . The control is then allocated according to some well-chosen

principle. In particular, The Gately measure allocates the control over 𝑁𝑏
𝐷
proportionally to the

predecessor of the nodes in 𝑁𝑏
𝐷

. Assuming 𝑁𝑏
𝐷
≠ ∅, this proportional allocator is for every node

𝑖 ∈ 𝑁 with 𝐷 (𝑖) ∩ 𝑁𝑏
𝐷
≠ ∅ defined as

𝑎𝑖 (𝐷) =
𝑠𝑏
𝐷
(𝑖)∑

𝑗∈𝑁 𝑠
𝑏
𝐷
( 𝑗)

=
𝑠𝑏
𝐷
(𝑖)∑

ℎ∈𝑁𝑏
𝐷
𝑝𝐷 (ℎ)

(10)

where the Gately measure is now given by 𝜉𝑖 (𝐷) = 𝑠𝑎𝐷 (𝑖) + 𝑎𝑖 (𝐷) · 𝑛
𝑏
𝐷

.

This compares, for example, to the allocation principle based on the egalitarian allocator of the

power over the nodes in 𝑁𝑏
𝐷
≠ ∅ given by

𝑒𝑖 (𝐷) =
1

# { 𝑗 ∈ 𝑁 | 𝐷 (𝑖) ∩ 𝑁𝑏
𝐷
≠ ∅}

(11)

and the resulting Restricted Egalitarian power measure given by 𝜀𝑖 (𝐷) = 𝑠𝑎
𝐷
(𝑖) + 𝑒𝑖 (𝐷) 𝑛𝑏𝐷 . We

emphasise that the Gately and Restricted Egalitarian power measures are members of the same

family of power measures for hierarchical networks, which have a collective allocative perspective

on the control over the nodes in 𝑁𝑏
𝐷

.

3.1 Properties of the Gately measure

We investigate the properties of the Gately measure from the cooperative game theoretic perspective

developed in this paper. We first investigate whether the Gately measure assigns a Core power gauge

as is the case for the 𝛽-measure. Second, we consider some characterisations of the Gately measure.

In particular, we derive an axiomatisation as well as investigate some interesting properties of the

Gately measure on some special subclasses of hierarchical networks.

The Gately measure is not necessarily a Core power gauge We first establish that contrary

to the property that the 𝛽-measure is the geometric centre of the set of Core power gauges of a

given hierarchical network, its Gately power gauge does not necessarily have to satisfy the Core

constraints. The next example provides a hierarchical network on a node set of 8 nodes which Gately

measure is not a Core power gauge.

Example 3.2 Consider the hierarchical network 𝐷 depicted in Figure 1 based on a node set 𝑁 =

{1, . . . , 8}. We note that 𝑁𝐷 = 𝑁𝑏
𝐷
= {6, 7, 8} and that nodes 1 and 2 fully control node 6, while nodes

3, 4 and 5 fully control nodes 7 and 8.

We compute that 𝑠𝑎
𝐷
(𝑖) = 0 for all 𝑖 ∈ 𝑁 and that, therefore, any power measure only considers the

control arrangements of the nodes in 𝑁𝐷 . In particular,

𝛽 (𝐷) =
(

1

2
, 1

2
, 2

3
, 2

3
, 2

3
, 0, 0, 0

)
∈ C(𝐷)
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1 2 3 4 5

6 7 8

Figure 1: The hierarchical network considered in Example 3.2.

and that

𝜉 (𝐷) =
(

3

8
, 3

8
, 3

4
, 3

4
, 3

4
, 0, 0, 0

)
∉ C(𝐷) .

Therefore, 𝜉1(𝐷) + 𝜉2(𝐷) = 3

4
< 1 = 𝜎𝐷 ({1, 2}) shows that the Gately measure does not allocate

sufficient power to the first two agents. The underlying reason is that the Gately value considers the

control of all nodes in 𝑁𝑏
𝐷

to be a collective resource that is proportionally distributed according to

𝑠𝑏
𝐷
(𝑖). The relative low values of 𝑠𝑏

𝐷
(1) = 𝑠𝑏

𝐷
(2) = 1 in comparison with 𝑠𝑏

𝐷
(3) = 𝑠𝑏

𝐷
(4) = 𝑠𝑏

𝐷
(5) = 2

imply that the assigned share of the first two nodes is less than the total of fully controlled nodes by

that node pair. ♦

The following theorem establishes under which conditions the Gately measure assigns a Core

power gauge to a hierarchical network. The class of networks identified in (ii) compares with the

classes of networks for which the Gately measure is identical to the 𝛽-measure.

Theorem 3.3 Let 𝐷 ∈ D𝑁 be a hierarchical network on 𝑁 .

(i) If # {𝑖 ∈ 𝑁 | 𝐷 (𝑖) ≠ ∅} ⩽ 3, then 𝜉 (𝐷) ∈ C(𝐷).

(ii) If 𝐷 is weakly regular, i.e., for all 𝑖, 𝑗 ∈ 𝑁𝑏
𝐷

: 𝑝𝐷 (𝑖) = 𝑝𝐷 ( 𝑗), then 𝜉 (𝐷) ∈ C(𝐷).

Proof. Assertion (i) follows directly from Theorem 4.2 of Gilles and Mallozzi (2023). Here we note

that the strong successor representation 𝜎𝐷 is essentially a three-player if # {𝑖 ∈ 𝑁 | 𝐷 (𝑖) ≠ ∅} = 3

and a two-player game if # {𝑖 ∈ 𝑁 | 𝐷 (𝑖) ≠ ∅} = 2. Both cases are covered by Theorem 4.2 of Gilles

and Mallozzi, establishing that 𝜉 (𝐷) = 𝑔(𝜎𝐷 ) ∈ C(𝜎𝐷 ) = C(𝐷) as desired.

Let 𝑝 ⩾ 2 such that 𝑝𝐷 ( 𝑗) = 𝑝 for all 𝑗 ∈ 𝑁𝑏
𝐷

as assumed. From this it follows that for 𝑖 ∈ 𝑁 :

𝜉𝑖 (𝐷) = 𝑠𝑎𝐷 (𝑖) +
𝑛𝑏
𝐷∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

𝑠𝑏𝐷 (𝑖) = 𝑠
𝑎
𝐷 (𝑖) +

𝑛𝑏
𝐷

𝑝 · 𝑛𝑏
𝐷

𝑠𝑏𝐷 (𝑖) = 𝑠
𝑎
𝐷 (𝑖) + 1

𝑝
𝑠𝑏𝐷 (𝑖)

Now let 𝐻 ⊆ 𝑁 be some node group. Define

𝐾𝐻 =

{
𝑗 ∈ 𝑁𝑏𝐷 | 𝐷−1( 𝑗) ⊆ 𝐻

}
and 𝑘𝐻 = #𝐾𝐻 ⩽ 𝑛

𝑏
𝐷 .
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Now note that

𝜎𝑑 (𝐻 ) = #

{
𝑗 ∈ 𝑁 | 𝐷−1( 𝑗) ⊆ 𝐻

}
=

∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 𝑘𝐻 .

We next compute∑︁
𝑖∈𝐻

𝜉𝑖 (𝐷) =
∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 1

𝑝

∑︁
𝑖∈𝐻

𝑠𝑏𝐷 (𝑖)

=
∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 1

𝑝

∑︁
𝑖∈𝐻

[
# { 𝑗 ∈ 𝐾𝐻 | 𝑗 ∈ 𝐷 (𝑖) } + #

{
𝑗 ∈ 𝑁𝑏𝐷 \ 𝐾𝐻 | 𝑗 ∈ 𝐷 (𝑖)

} ]
⩾

∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 1

𝑝

∑︁
𝑖∈𝐻

# { 𝑗 ∈ 𝐾𝐻 | 𝑗 ∈ 𝐷 (𝑖) }

=
∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 1

𝑝

∑︁
𝑗∈𝐾𝐻

𝑝𝐷 ( 𝑗) =
∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 1

𝑝
· 𝑝 𝐾𝐻

=
∑︁
𝑖∈𝐻

𝑠𝑎𝐷 (𝑖) + 𝐾𝐻 = 𝜎𝐷 (𝐻 ).

Since 𝐻 was arbitrary, this establishes that

∑
𝑖∈𝐻 𝜉𝑖 (𝐷) ⩾ 𝜎𝐷 (𝐻 ) for all coalitions 𝐻 ⊆ 𝑁 and,

therefore, 𝜉 (𝐷) ∈ C(𝜎𝐷 ) = C(𝐷), showing the second assertion of the theorem.

An axiomatic characterisation of the Gately measure We are able to devise a full axioma-

tisation of the Gately measure on D𝑁 based on three defining properties. In order to state these

properties, we define for every hierarchical network 𝐷 ∈ D𝑁 on node set 𝑁 its principal restriction as

the network 𝑃𝐷 ∈ D𝑁 defined by 𝑃𝐷 (𝑖) = 𝑁𝑏𝐷 ∩ 𝐷 (𝑖) for every node 𝑖 ∈ 𝑁 . Similarly, a hierarchical

network 𝐷 ∈ D𝑁 is a principal network if 𝐷 = 𝑃𝐷 . It is clear that a principal hierarchical network

𝐷 is characterised by the property that 𝑁𝑎
𝐷
= ∅, meaning that all nodes with predecessors have

actually multiple predecessors.

Theorem 3.4 Let D𝑁 be the class of hierarchical networks on node set 𝑁 . Then the Gately measure

𝜉 : D𝑁 → R𝑁 is the unique function𝑚 : D𝑁 → R𝑁 that satisfies the following three properties:

(i) Normalisation:𝑚 is 𝑛𝐷 -normalised in the sense that
∑
𝑁 𝑚𝑖 (𝐷) = 𝑛𝐷 for all 𝐷 ∈ D𝑁 ;

(ii) Normality: For every hierarchical network 𝐷 ∈ D𝑁 it holds that

𝑚(𝐷) = 𝑠𝑎𝐷 +𝑚(𝑃𝐷 ) (12)

where 𝑃𝐷 ∈ D𝑁 is the principal restriction of 𝐷 , and;

(iii) Restricted proportionality: For every principal network 𝐷 ∈ D𝑁 with 𝐷 = 𝑃𝐷 it holds that

𝑚(𝐷) = 𝜆𝐷 𝑠𝐷 for some 𝜆𝐷 > 0. (13)

Proof. We first show that the Gately measure 𝜉 indeed satisfies these three properties. Normalisation

trivially follows from the definition of the Gately measure. Let 𝐷 ∈ D𝑁 be an arbitrary hierarchical
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network on 𝑁 .

First, if 𝑁𝑏
𝐷
= ∅, we have that 𝑠𝑏

𝐷
= 0 ∈ R𝑁 and 𝜉 (𝐷) = 𝑠𝑎

𝐷
∈ R𝑁+ . Hence, 𝑃𝐷 is the empty network

with 𝑃𝐷 (𝑖) = ∅ for all 𝑖 ∈ 𝑁 . Therefore, 𝑠𝑃𝐷 = 𝑠𝑏
𝐷
= 0 and 𝜉 (𝑃𝐷 ) = 0 = 𝜆 𝑠𝑏

𝐷
= 𝜆 𝑠𝑃𝐷 for any 𝜆 > 0.

This implies that 𝜉 (𝐷) satisfies the normality property as well as restricted proportionality for the

case that 𝑁𝑏
𝐷
= ∅.

Second, in the case that 𝑁𝑏
𝐷
≠ ∅, we have that

𝜉 (𝐷) = 𝑠𝑎𝐷 +
𝑛𝑏
𝐷∑

𝑗∈𝑁𝑏
𝐷
𝑝𝐷 ( 𝑗)

𝑠𝑏𝐷

Furthermore, we compute that for every 𝑖 ∈ 𝑁 : 𝜉𝑖 (𝑃𝐷 ) =
𝑛𝑏
𝐷∑

𝑗 ∈𝑁𝑏
𝐷

𝑝𝐷 ( 𝑗 ) 𝑠
𝑏
𝐷
(𝑖) = 𝜆𝐷 𝑠

𝑏
𝐷
(𝑖), where

𝜆𝐷 =
𝑛𝑏
𝐷∑

𝑗 ∈𝑁𝑏
𝐷

𝑝𝐷 ( 𝑗 ) . This implies that 𝑔 satisfies restricted proportionality.

Next, let𝑚 : D𝑁 → R𝑁 be a power measure that satisfies the three given properties.

First, consider a network 𝐷 ∈ D𝑁 with 𝑁𝑏
𝐷
= ∅. Hence, 𝑠𝑏

𝐷
= 0, implying with (iii) that𝑚(𝑃𝐷 ) =

𝜆𝐷𝑠
𝑏
𝐷
= 0. Therefore, with (ii), it follows that𝑚(𝐷) = 𝑠𝑎

𝐷
= 𝜉 (𝐷).

Next, consider 𝐷 ∈ D𝑁 with 𝑁𝑏
𝐷

≠ ∅. Then, noting that 𝑠𝑃𝐷 = 𝑠𝑏
𝐷

, from (iii) it follows that

𝑚(𝑃𝐷 ) = 𝜆𝐷 𝑠𝑏𝐷 > 0
8

and with (ii) this implies that

𝑚(𝐷) = 𝑠𝑎𝐷 +𝑚(𝑃𝐷 ) = 𝑠𝑎𝐷 + 𝜆𝐷 𝑠𝑏𝐷 > 0.

Using the normalisation of𝑚 stated as property (i), we conclude that 𝜆𝐷 =
𝑛𝑏
𝐷∑

𝑗 ∈𝑁𝑏
𝐷

𝑝𝐷 ( 𝑗 ) and, therefore,

𝑚(𝐷) = 𝜉 (𝐷).

Uniqueness of 𝑔 as a power measure that satisfies the three listed properties is immediate and stated

here without proof.

The three properties stated in Theorem 3.4 have a natural and direct interpretation. In particular, the

normality property imposes that the power measure always assigns its uniquely subordinated nodes

are assigned to a given node and that the main task of a power measure is to assign a power gauge

for the principal restriction of any hierarchical network. This seems a rather natural hypothesis that

is satisfied by other power measures such as the 𝛽-measure.

Restricted proportionality imposes that in a principal network the assigned power gauge is

proportional to the number of other nodes that are controlled by that node. Again this seems a

plausible hypothesis, even though it is violated by the 𝛽-measure.

In fact, the three properties are non-redundant as the following simple examples show:

• As indicated above, with regard to the axiomatisation devised in in Theorem 3.4, the 𝛽-

measure satisfies the normalisation property (i) as well as the normality property (ii), but

not the restricted proportionality property (iii). The Restricted Egalitarian power measure

𝑒 is another example of a power measure on D𝑁 that satisfies (I) as well as (ii), but not the

Restricted Proportionality property (iii).

8
We use the definition that for 𝑥,𝑦 ∈ R𝑁 : 𝑥 > 𝑦 if and only if 𝑥𝑖 ⩾ 𝑦𝑖 for all 𝑖 ∈ 𝑁 and 𝑥 𝑗 > 𝑦 𝑗 for some 𝑗 ∈ 𝑁 .
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• Consider the proportional power measure 𝜌 on D𝑁 with for every 𝐷 ∈ D𝑁 :

𝜌 (𝐷) = 𝑛𝐷∑
𝑖∈𝑁 𝑠𝐷 (𝑖)

𝑠𝐷 .

Then this proportional power measure satisfies the normalisation property (i) as well as the

restricted proportionality property (iii), but not the normality property (ii) stated in Theorem

3.4.

• Finally, consider the direct power measure 𝑠 on D𝑁 with for every 𝐷 ∈ D𝑁 :

𝑠 (𝐷) = 𝑠𝐷 ∈ R𝑁+ .

This direct power measure 𝑠 satisfies the restricted proportionality property (iiI) as well as the

normality property (ii) stated in Theorem 3.4, but not the stated normalisation property (i).

3.2 A comparison between the 𝛽-measure and the Gately measure

On the class of weakly regular hierarchical networks, the Gately value satisfies the strong property

that it coincides with the 𝛽-measure. This is explored in the next theorem.

Theorem 3.5 Let 𝐷 ∈ D𝑁𝑤 be a weakly regular hierarchical network on 𝑁 . Then the Gately measure

coincides with the 𝛽-measure, i.e., 𝜉 (𝐷) = 𝛽 (𝐷).

Proof. To show the assertion, denote by 𝑝 = 𝑝𝐷 (𝑖) ⩾ 2 the common number of predecessors for

𝑖 ∈ 𝑁𝑏
𝐷

. Then it holds that∑︁
𝑗∈𝑁

𝑠𝑏𝐷 ( 𝑗) =
∑︁
𝑖∈𝑁𝑏

𝐷

𝑝𝐷 (𝑖) = 𝑝 · 𝑛𝑏𝐷 .

This implies simply that

𝜉 (𝐷) = 𝑠𝑎𝐷 +
𝑛𝑏
𝐷

𝑝 · 𝑛𝑏
𝐷

𝑠𝑏𝐷 = 𝑠𝑎𝐷 + 1

𝑝
𝑠𝑏𝐷 = 𝛽 (𝐷),

since for every 𝑖 ∈ 𝑁 : 𝛽𝑖 (𝐷) =
∑
𝑗∈𝐷 (𝑖 )

1

𝑝𝐷 ( 𝑗 ) = 𝑠
𝑎
𝐷
(𝑖) + 𝑠𝑏

𝐷
(𝑖) · 1

𝑝
.

Theorems 3.3 and 3.5 allow us to delineate networks with non-empty sets of Core power gauges

that contain either the Gately measure, or the 𝛽-measure, or both, as well as determine when both

of these measures coincide. This is explored in the next example.

Example 3.6 Consider the network 𝐷 depicted in Figure 2 on the node set 𝑁 = {1, . . . , 5}. Note

that this network satisfies the conditions of Theorem 3.3(i), but not of Theorem 3.5. Hence, 𝜉 (𝐷) ∈
C(𝐷) ≠ ∅, but 𝜉 (𝐷) ≠ 𝛽 (𝐷) ∈ C(𝐷).
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1

2 3

4 5

Figure 2: Network for Example 3.6.

We compute that the set of Core power gauges for this network is given by
9

C(𝐷) = Conv { (2, 1, 1, 0, 0) , (3, 0, 1, 0, 0) , (3, 1, 0, 0, 0) , (2, 2, 0, 0, 0) , (4, 0, 0, 0, 0) }

Next, we determine that the 𝛽-measure is in the (weighted) centre of C(𝐷) with

𝛽 (𝐷) =
(
2

5

6
, 5

6
, 1

3
, 0 , 0

)
∈ C(𝐷)

and that the Gately measure is computed as

𝜉 (𝐷) =
(
2

4

5
, 4

5
, 2

5
, 0 , 0

)
∈ C(𝐷) .

Clearly, we have established that in this case 𝜉 (𝐷) ≠ 𝛽 (𝐷) even though the network 𝐷 satisfies the

condition of Theorem 3.3(i), implying that the Gately measure is a Core power gauge. ♦

A question remaining is whether the assertion of Theorem 3.5 can be reversed, i.e., if 𝜉 (𝐷) = 𝛽 (𝐷)
then 𝐷 has to be weakly regular. The answer to that is negative as the following example shows.

1 2 3 4

5 6 7 8

Figure 3: Network for Example 3.7.

9
We point out that there are two simple subnetworks of 𝐷 that result in exactly the same power gauge, namely the

subnetwork in which node 1 dominates node 4 and node 2 dominates node 5 and vice versa. The resulting power gauge is

(3, 1, 0, 0, 0).
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Example 3.7 Consider the node set 𝑁 = {1, . . . , 8} and the network 𝐷 depicted in Figure 3. As

the colour code indicates, there are four groups of nodes in this network. Nodes 1 and 2 together

dominate node 5, while nodes 3 and 4 together dominate nodes 6,7 and 8.

Clearly, this network is not weakly regular. On the other hand, we claim that 𝜉 (𝐷) = 𝛽 (𝐷). Now,

we compute that 𝑁𝑎
𝐷
= ∅, 𝑁𝑏

𝐷
= {5, 6, 7, 8} and 𝑛𝑏

𝐷
= 4. Furthermore,

∑
𝑖∈𝑁𝑏

𝐷
𝑝𝐷 (𝑖) = 2 + 3 · 2 = 8.

This implies now that for every 𝑖 ∈ 𝑁 :

𝜉𝑖 (𝐷) =
𝑛𝑏
𝐷∑

𝑖∈𝑁𝑏
𝐷
𝑝𝐷 (𝑖)

𝑠𝑏𝐷 (𝑖) = 4

8
𝑠𝑏𝐷 (𝑖) = 1

2
𝑠𝑏𝐷 (𝑖)

resulting in 𝜉 (𝐷) =
(

1

2
, 1

2
, 1 1

2
, 1 1

2
, 0 , 0 , 0

)
and that this coincides with 𝛽 (𝐷). ♦
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